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Abstract
Given two rational convex polytopes A ⊆ B ⊂ Rd and a number k where A is given by vertices and
B is given by halfspaces, the Nested Polytope Problem asks whether there exists a polytope
X with k vertices such that A ⊆ X ⊆ B. We prove that Nested Polytope Problem is ∃R-
complete, which implies that Nested Polytope Problem is not contained in the complexity
class NP, unless ∃R = NP. Although this result was, to the best of our knowledge, never pointed
out explicitly, it follows from some known results easily, as we will explain [17, 8].

1 Introduction

Given two rational convex polytopes A ⊆ B ⊂ Rd and a number k where A is given by
vertices and B is given by halfspaces, the Nested Polytope Problem asks whether there
exists a polytope X with k vertices such that A ⊆ X ⊆ B. The earliest mention of this
problem that we know of is by Silio in 1979 [18], who found an O(nm) time algorithm for
nesting a triangle between an n-gon and m-gon. Independently Victor Klee suggested the
same problem as was pointed out in several papers [11, 2, 9, 16, 10]. Gillis and Glineur
showed that the Nested Polytope Problem is polynomial time equivalent to a variant of
the Non-negative Matrix Factorization (NMF) problem called Restricted NMF
[13]. These problems respectively generalize the Intermediate Simplex problem, where
the polytopes A and B are required to be full dimensional and k = d + 1, and a special
case of NMF called Exact NMF. Vavasis showed that these two problems are polynomial
time equivalent to each other, and are NP-hard [19]. Yannakakis showed that NMF is a
generalization of the extension complexity problem for polytopes. More specifically, the
non-negative rank of the slack-matrix of a polytope corresponds precisely to the extension
complexity of the polytope defined by the set of defining linear constraints. Thereby he
gave lower bounds on the size of symmetric linear programs needed to describe certain
combinatorial problems such as the Traveling Salesman problem [20], see also [12] for the
asymmetric case. Yannakakis’s paper may be celebrated for showing that a swath of fruitless
attempts to prove P= NP are untenable. This situation is laid out in Figure 1. Our main
contribution is an independent proof that the Nested Polytope Problem is ∃R-complete
by a simple geometric construction.

Note that although this seems never to be pointed out explicitly, the result is not
novel. In 2016, it was shown elegantly by Shitov that NMF is ∃R-complete [17]. Cohen
and Rothblum described already in 1993 a simple polynomial reduction from NMF to the
Nested Polytope Problem [8].

I Theorem 1.1. The Nested Polytope Problem is ∃R-complete.1

1 Our method of proof also implies a universality theorem similar to Mnëv’s theorem for oriented matroids,
but we do not include it in this abstract.
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Figure 1 The long and winding road from extension complexity to nested polytopes.

For more work on Nested Polytope Problem and NMF, we refer the reader to the
following literature [2, 5, 7, 14, 4, 13, 15, 3, 6].

The proof works in two steps. As a first step, we introduce a variant of the existential
theory of the reals, denoted ETR-INV-array, and we show this variant is ∃R-complete. This
is described in Section 2. It ensures that we only have to encode algebraic relations that have
a specific form. In the second step, we define gadgets, which are small Nested Polytope
Problem instances where the coordinates of certain vertices of the nested polytope X are
forced to satisfy the algebraic relations from the first step, and then we assemble these
small gadgets to define a Nested Polytope Problem instance corresponding to each
ETR-INV-array instance.

2 Encoding ETR

As a first step to encode an instance of the existential theory of the reals as an instance of
the Nested Polytope Problem, we first simplify the algebraic structure.

An instance A of ETR-INV-array of size m × n is an m-by-n matrix A of variables
αi,j together with a system of equations of the form

αi,j + αi,k = 5
2 , αi,j + αi,k + αi,l = 5

2 , αi,k · αj,k = 1.

Note that the linear equations relate variables in the same row and the quadratic equations
relate variables in the same column. A solution toA is an assignment of values αi,j ∈ [ 1

2 , 2]m×n

to each variable that satisfies each equation of A. The corresponding decision problem asks
whether an instance of A has a solution.

I Lemma 2.1. ETR-INV-array is ∃R-complete.

This can be proven by introducing intermediate variables. For example, the relation
αi,j + αi,k = αi,l could be obtained by introducing a variable αi,m and using the equations
αi,j + αi,k + αi,m = 5

2 and αi,m + αi,l = 5
2 . A similar reduction is given in [1, Lemma 12].

3 Building the polytopes

This section is devoted to show the following lemma. Together, Lemma 2.1 and Lemma 3.1
establish Theorem 1.1.

I Lemma 3.1. Let A be an ETR-INV-array of size m× n. There exists convex polytopes
A ⊂ B ⊂ R2+n+m such that there exists a nested polytope A ⊂ X ⊂ B with k = mn+ 2m+ 2
vertices, if and only if A has a solution.
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I Remark. In fact we will show something stronger. In our construction, the polytopes
A ⊂ B in Theorem 3.1 will have precisely 2m+ 2 vertices in common. It follows that any
nested polytope A ⊂ X ⊂ B must contain these common vertices. Thus X will have m · n
remaining vertices, and our construction will force these remaining vertices to be contained
in certain segments of some of the edges of the outer polytope B. By parametrizing each
of these segments by the interval [ 1

2 , 2] we obtain a correspondence between the remaining
m · n vertices and a subset of [ 1

2 , 2]m·n. The key step in the proof of Lemma 3.1 is to show
that a positioning of the remaining vertices of X gives us A ⊂ X ⊂ B, if and only if those
vertex positions correspond to a solution of A.

3.1 Two geometric observations

Here we state two simple geometric observations that are used for the “gadgets” needed in
our construction of the polytopes of Lemma 3.1. The proofs are simple calculations and left
to the reader.

Let {v0, v1, . . . , vk} be a set of linearly independent points in Rd. For 1 ≤ i ≤ k let
wi = vi + v0 and define the prism P as

P = conv({v1, . . . , vk, w1, . . . , wk}).

For t ∈ [0, 1] define the point qt ∈ P as

qt = (1− t)( 1
kv1 + · · ·+ 1

kvk) + t( 1
kw1 + · · ·+ 1

kwk) = 1
kv1 + · · ·+ 1

kvk + tv0.

Finally, for 1 ≤ i ≤ k define points pi as

pi = (1− λi)vi + λiwi = vi + λiv0,

where λi ∈ [0, 1]. We have the following.

I Observation 3.2. qt ∈ conv({p1, . . . , pk}) if and only if
∑k

i=1 λi = tk.

I Observation 3.3. Let α1, α2 ∈ [ 1
2 , 2] and p1 = (α1,−1) and p2 = (−1, α2). Then it holds

that the origin (0, 0) ∈ conv({p1, p2}) if and only if α1 · α2 = 1.

3.2 A basic outline of the construction

We now give an outline of the construction of the polytopes in Lemma 3.1, without giving
explicit coordinates, and rather focusing on the three “gadgets” that will be used to encode
the three types of equations in A.

3.2.1 The outer polytope

The outer polytope B is a product of an orthogonal simplex of dimension m with a regular
simplex of dimension n + 1. That is, we start with an “orthogonal frame” spanning Rm,
consisting of m mutually orthogonal segments of length 3 all meeting in a common point.
Note that the convex hull of these segments form an m-dimensional orthogonal simplex.
We now take n + 2 distinct copies of the orthogonal frame, U1, U2, V1, . . . , Vn, each one
translated into “independent dimensions” so that their union now lives in R2+n+m. We label
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the segments of these orthogonal frames as

U1 = {τ1,1, . . . , τm,1}
U2 = {τ1,2, . . . , τm,2}
V1 = {σ1,1, . . . , σm,1}

...
Vn = {σ1,n, . . . , σm,n}

such that the segments τi,1, τi,2, σi,1, . . . , σi,n are all parallel.
We now take the outer polytope B to be the convex hull of U1 ∪ U2 ∪ V1 ∪ · · · ∪ Vn. It is

straight-forward to show that B is an n+m+ 1-dimensional polytope with (n+ 2)(m+ 1)
vertices. In what follows, for each 1 ≤ i ≤ m and 1 ≤ j ≤ n, the “second half” of segment
σi,j , parametrizing the interval [ 1

2 , 2], will correspond to the variable αi,j in ETR-INV-array
A. The segments τi,j will play an auxiliary role which we now describe.

3.2.2 Building the inner polytope: Enforcing vertices to segments
The first step in building the inner polytope A is to enforce the following.

I Property 3.4. Let X be a nested polytope, with k = mn+ 2m+ 2 vertices and A ⊂ X ⊂ B.
For every 1 ≤ i ≤ m and 1 ≤ j ≤ n, the segment σi,j ∈ Vj contains exactly one vertex of X,
which we denote by xi,j .

(More specifically, each segment of the orthogonal frame Vi will contain exactly one vertex
from X in its “second half”, thus encoding a value in the interval [ 1

2 , 2].) This can be done as
follows. Fix indices 1 ≤ i ≤ m and 1 ≤ j ≤ n, and consider segment τi,1 ∈ U1 and its parallel
copy σi,j ∈ Vj , which are edges of a 2-dimensional face of the outer polytope B. Define the
point yi,j to be the unique point in this 2-face such that segment τi,1 ∈ U1 is mapped to the
second half of its parallel copy σi,j ∈ Vj by central projection through yi,j . Similarly, we
define the analogous point zi,j in the 2-face of A spanned by the segment τi,2 ∈ U2 and its
parallel copy σi,j ∈ Vj . (See Figure 2.)
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Figure 2 The vertices of any nested polytope A ⊂ X ⊂ B (marked in red) must include the
endpoints of segments τi,1 ∈ U1 and τi,2 ∈ U2, while the last vertex, xi,j , must be contained in the
segment σi,j ∈ Vj restricted to the interval [ 1

2 , 2].
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At this stage of the construction the inner polytope A will consist of the orthogonal
frames U1 and U2 together with the points {yi,j , zi,j} for all 1 ≤ i ≤ m and 1 ≤ j ≤ n.
Moreover, if X is a nested polytope, with mn+ 2m+ 2 vertices and A ⊂ X ⊂ B, then X
must contain the orthogonal frames U1 and U2 (which accounts for 2m+ 2 of the vertices)
and one vertex in each of the segments of the orthogonal frames V1, . . . , Vn (accounting for
the remaining m · n vertices). Thus Property 3.4 is satisfied, and we let xi,j denote the
unique vertex of X which is contained in the (second half of the) segment σi,j ∈ Vj , which
we associate with the variable αi,j ∈ [ 1

2 , 2].

3.2.3 Building the inner polytope: Encoding the linear equations
In order to enforce the relation αi,j + αi,k = 5

2 , we add a new vertex pi,j,k to the inner
polytope A as follows. We consider the rectangular 2-face of the outer polytope B spanned
by the segments σi,j ∈ Vj and σi,k ∈ Vk. Define pi,j,k to be the point in this 2-face such that
pi,j,k is contained in the convex hull of the vertices xi,j and xi,k of the nested polytope X
(satisfying Property 3.4) if and only if the associated variables αi,j + αi,k = 5

2 . (The unique
point pi,j,k exists by Observation 3.2. See Figure 3.)

.
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.xi,j

−1

1
2

2

−1

1
2

2

Figure 3 The vertices xi,j and xi,k contain the point pi,j,k in their convex hull if and only if the
associated variables satisfy the equation αi,j + αi,k = 5

2

By adding the vertex pi,j,k to A, it follows that for any nested polytope X satisfying
Property 3.4, the associated variables satisfy the equation αi,j + αi,k = 5

2 .

Enforcing the relation αi,j + αi,k + αi,l = 5
2 is similar to the previous case, and we add

a new vertex qi,j,k,l to the inner polytope A as follows. We consider the triangluar prism
spanned by the segments σi,j ∈ Vj , σi,k ∈ Vk, and σi,l ∈ Vl, which is a 3-face of the outer
polytope B.

Define qi,j,k,l to be the point in this 3-face such that qi,j,k,l is contained in the convex
hull of the vertices xi,j , xi,k, and xi,l of the nested polytope X (satisfying Property 3.4) if
and only if the associated variables αi,j + αi,k + αi,l = 5

2 . (The unique point qi,j,k,l exists by
Observation 3.2. See Figure 4.)

By adding the vertex qi,j,k,l to A, it follows that for any nested polytope X satisfying
Property 3.4, the associated variables satisfy the equation αi,j + αi,k + αi,l = 5

2 .

3.2.4 Building the inner polytope: Encoding the quadratic equations
In order to enforce the relation αi,k · αj,k = 1 we add a new vertex ri,j,k to the inner
polytope A as follows. Consider the triangular 2-face of B spanned by segments σi,k ∈ Vk

and σj,k ∈ Vk. We can coordinatize the plane containing this 2-face such that the segment
σi,k is parametrized by {(x,−1) : −1 ≤ x ≤ 2} and the segment σj,k is parametrized by
{(−1, y) : 1 ≤ y ≤ 2}. We then define ri,j,k to be the origin with respect to this coordinate
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Figure 4 The vertices xi,j , xi,k, and xi,l contain the point qi,j,k,l if and only if the associated
variables satisfy the equation αi,j + αi,k + αi,l = 5

2 .

system. It follows from Observation 3.3 that the vertices xi,k and xj,k contain the point ri,j,k

in their convex hull if and only if the associated coordinates satisfy the equation αi,k ·αj,k = 1.
(See Figure 5.)

.
| | |
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Figure 5 The vertices xi,k and xj,k contain the point ri,j,k if and only if the associated variables
satisfy the equation αi,k · αj,k = 1.

By adding the vertex ri,j,k to A, it follows that for any nested polytope X satisfying
Property 3.4, the associated variables satisfy the equation αi,k · αj,k = 1.
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