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Abstract
We experimentally study the problem of estimating the volume of convex bodies, focusing on H-
and V-polytopes, as well as zonotopes. Although a lot of effort is devoted to practical algorithms
for H-polytopes there is no such method for the latter two representations. We propose a new,
practical method for all representations which also improves upon the performance of existing
methods on H-polytopes.

1 Introduction

Volume computation of a convex body in general dimension is a fundamental problem in
discrete geometry. In the past 28 years randomized algorithms, for this problem, have
made great progress. The two existing [5], [2] practical methods and the corresponding
implementations are based on theoretical results, but they make some practical adjustments
and show experimentally that they estimate volumes with small errors and high probability.
Our new practical method can be used for general convex bodies but in this paper we focus
on convex polytopes. A convex polytope P can be given as (a) an intersection of q halfspaces
(H-polytope), (b) a convex hull of a set of points (V-polytope) and (c) a Minkowski sum of k
segments (zonotope). We assume that an H-polytope is given by a matrix A ∈ Rq×d and a
vector b ∈ Rq, s.t. P = {x | Ax ≤ b} and a zonotope by a matrix G ∈ Rd×k which contains
the k segments column-wise.

Exact volume computation is #P-hard for H- and V-polytopes, including zonotopes [6].
There are several implementations in packages such as VINCI or qHull but, as expected,
they do not scale beyond, say, d ≥ 15 dimensions. The first approximation algorithm, is
given in [4] with complexity O∗(d23).

The main approach relies on a Multiphase Monte Carlo (MMC) sequence of convex bodies
P0 ⊆ · · · ⊆ Pm = P such that rejection sampling would efficiently estimate vol(Pi)/vol(Pi−1),
i.e. sample uniform points from Pi and reject/accept points in Pi−1. Assuming P is well-
rounded and also that the unit ball Bd is the largest inscribed ball in P , defining P1. Then
each convex body Pi is defined by the intersection of a scaled copy of Bd with P while the
largest ball, which defines Pm = P , is an enclosing ball of P . Then we estimate vol(P )
through the telescopic product (2). The critical complexity issue is to minimize the length
of the sequence in MMC, called m, while each ratio remains large enough to use rejection
sampling. In [7] the sequence of balls in MMC is defined deterministically for each instance,
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Figure 1 Balls in MMC in [7] left and from the annealing schedule right (r=0.25, δ=0.05)

while m = O(d lg d). Our method uses a new annealing schedule to define a sparser sequence
of balls, (Fig. 1), and a new practical convergence criterion for each ratio in the MMC in order
to minimize the number of sampled points to estimate each ratio. Moreover for zonotopes of
order ≤ 4 we do not use balls in MMC but we define a centrally symmetric convex polytope
which reduces the number of bodies (or phases) significantly.

Current state-of-the-art software is based on the above paradigms and, for H-polytopes,
typically uses Hit-and-Run (HnR). VolEsti [5], which scales up to hundreds of dimensions,
uses Coordinate-Direction HnR. We shall also juxtapose the software of [2] (for H-polytopes),
which implements [1] with an annealing schedule.

These implementations can not handle efficiently zonotopes or V-polytopes as they require
an inscribed ball (ideally the largest one). Additionally the software of [2] requires the number
of facets which is typically exponential in the dimension for both zonotopes and V-polytopes.
Our software outperforms for d ≤ 100 software for H-polytopes by [2] and [5]. Moreover
we provide the first practical method for V-polytopes and zonotopes that scales to high
dimensions (currently 100 for V-polytopes and low-order zonotopes).

We introduce some notions from statistics and refer to [3] for details. Given a random
sample of size ν from a random variable X ∼ N (µ, σ2) with unknown variance σ2, the (one
tailed) t-test checks the null hypothesis that the population mean exceeds a specified value
µ0 using the statistic t = x̄−µ0

s/
√
ν
∼ tν−1, where x̄ is the sample mean, s the sample standard

deviation and tν−1 is the t-student distribution with ν − 1 degrees of freedom. Given a
significance level α > 0 we test the null hypothesis for the mean value of the population,
H0 : µ ≤ µ0. We reject H0 if,

t ≥ tν−1,α ⇒ x̄ ≥ µ0 + tν−1,αs/
√
n, (1)

where tν−1,α is the critical value of the t-student distribution. Inequality 1 implies Pr(H0 true |
reject H0) = α. Otherwise we fail to reject H0.

2 Volume algorithm

Our method introduces some new algorithmic features. The MMC of the algorithm constructs
a sequence of convex bodies C1 ⊇ · · · ⊇ Cm intersecting the given polytope P ; we introduce
a new annealing schedule in order to minimize m. A typical choice for the Ci’s is a sequence
of co-centric balls but any set of convex bodies can be used in our method. We re-write the
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telescopic product in [7] as follows:

vol(P ) =
vol(Pm)
vol(Cm)

vol(P1)
vol(P0)

vol(P2)
vol(P1)

· · · vol(Pm)
vol(Pm−1)

vol(Cm), where P0 = P, Pi = Ci ∩ P. (2)

The behavior of our method is parametrized by: the error of approximation ε, cooling
parameters 0 < r < 1, δ > 0, s.t. 0 < r + δ < 1 which are used in the schedule, significance
level α > 0 of the statistical tests, ν the degrees of freedom for the t-student used in t-tests,
parameter N that controls the number of points νN generated in Pi, and n the length of the
sliding window. From the telescopic product (2) it is clear that in practical estimations Cm
has to be a convex body whose volume is computed much faster than vol(P ) (ideally by a
closed formula) and which can be sampled efficiently.

The annealing schedule specifies C1 ⊇ · · · ⊇ Cm using the following two statistical tests:

testL(P1, P2, r, δ, α, ν,N): testR(P1, P2, r, α, ν,N):
H0 : vol(P2)/vol(P1) ≥ r + δ H0 : vol(P2)/vol(P1) ≤ r
Successful if H0 is rejected Successful if H0 is rejected

These tests are being used by annealing schedule to restrict each ratio ri = vol(Pi+1)/vol(Pi)
in the interval [r, r + δ] with high probability in order to avoid unnecessarily big ratios in
MMC. Then we can use rejection sampling to estimate efficiently each ratio. Given Pi,
testL is used to define Pi+1 ⊆ Pi s.t. ratio vol(Pi+1)/vol(Pi) is not too large, while testR is
used so that the ratio is not too small, with high probability. In general, if we sample N
uniform points from a body Pi then random variable X that counts points in Pi+1, follows
X ∼ b(N, ri), the binomial distribution, and random variable Y = X/N ∼ N (ri, ri(1−ri)/N)
is Gaussian. If we sample νN points from Pi and split the sample into ν sublists of length
N , the corresponding ν ratios are experimental values that follow N (ri, ri(1− ri)/N) and
can be used to check both null hypotheses for ri in testL and testR. Using the mean µ0 of
the ν ratios, ri is restricted to [r, r + δ] with high probability when the following holds:

r + δ − tν−1,α
s√
ν
> µ0 > r + tν−1,α

s√
ν
, (3)

Initialization of the annealing schedule is to compute the body C ′ s.t. the volume of
C ′ ∩ P could be efficiently estimated using rejection sampling, i.e. sampling from C ′ and
accepting points in C ′ ∩ P . Body C ′ is also used for the stopping criterion: the annealing
schedule stops in the i-th step if testR(Pi, C ′ ∩P ) succeeds, which means that the vol(Pi) is
close enough to vol(C ′ ∩ P ), so that rejection sampling can be used. Then set m = i+ 1 and
Cm = C ′, Pm = Cm ∩ P . When balls are used in the MMC, the smallest ball Cm is not an
inscribed ball and the largest one, C1, is not an enclosing ball as in [7]. Hence in practice
the number of phases in [5] is an upper bound, with high probability, on the number of
phases of our method, when 0 < r + δ < 1/2. Fig. 1 shows the sequence of balls for a given
polytope P with our method (m=1) and in [7] (m=6). The ratios our method estimates are:
vol(P1)/vol(P0) and vol(P1)/vol(C1), where P0 = P, P1 = C1 ∩ P .

The annealing schedule returns m bodies and we estimate m+ 1 volume ratios. For fixed
step i and each sample point generated in Pi, we keep the value of the i-th ratio. We store
the last n such values in a queue called sliding window denoted by W whose length is n. We
update W for each new point by inserting the new ratio and by popping out the oldest ratio
in W . For each ratio ri, we bound error by εi s.t.

∑m
i=0 ε

2
i = ε2 then, from standard error

propagation analysis, (2) estimates vol(P ) with error at most ε.
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At step i, let µ̂ be the mean, s the st.d. of W and Pr = 3/4. Using p = (1 + Pr)/2,
where zp =

√
2 · erf−1(2p − 1), we consider the interval [µ̂ − zps, µ̂ + zps], where erf is the

Gauss error function. The values that the sliding window contains are not independent, so
we can not define a confidence interval using t-student distribution, but we experimentally
show that the following practical criterion is very efficient:

if 2zps
µ̂− zps

≤ εi/2, then declare convergence. (4)

In practice we set n = O(d2) so that our method estimates volumes with error ≤ ε with high
probability.

We use Hit-and-Run (HnR) with uniform target distribution for sampling from Pi at step
i of the annealing schedule. One step of HnR is described below. For a value t we return a
point after t iterations.

Hit-and-Run(P, p): Convex polytope P , current point p ∈ P
Pick a uniformly distributed line ` through p
Return a uniform point on the chord ` ∩ P

For zonotopes each step in both Coordinate-Directions HnR and Random-Directions HnR
solves the following LP to compute one extreme point on ` ∩ P : minimize α, s.t. p+ αv =∑k
i=1 λigi, −1 ≤ λi ≤ 1. For the second extreme point, keep the same constraints and

minimize −α. This LP uses the basic feasible solution of the first one.
Moreover, for zonotopes we study different types of convex bodies than ball for the MMC

sequence. GTG has k − d zero eigenvalues; the corresponding eigenvectors form matrix
Q ∈ Rk×(k−d). The intersection of the hypercube [−1, 1]k with the d-dimensional affine
subspace defined by QT = 0 equals a d-dimensional polytope C in Rk. SVD yields an
orthonormal basis for the linear constraints, and its orthogonal complement W⊥:

Q = USV T =
[
W

W⊥

]T [
S1 0
0 0

]
V T .

LetAy ≤ b, A ∈ R2k×k be an H-representation of [−1, 1]k, thenMx ≤ b, M = AWT
⊥ (GWT

⊥ )−1 ∈
Rd×d is an H-representation of the full-dimensional, centrally symmetric polytope C ⊆ P

with ≤ 2k facets to be used in MMC. Each Ci arises from parallel shifting of the facets of C.
This C improves the schedule when order is low, i.e. ≤ 4.

3 Implementation and experiments

We perform extended experiments analyzing various aspects of our method such as practical
complexity and how is affected by the bodies used in MMC and we compare our implemen-
tation with the matlab code of [2] and C++ package VolEsti [5]. Our C++ software is open
source1. When we use balls in MMC we call our implementation CoolingBall and when we
use the H-polytope for zonotopes we call it CoolingHpoly. We call the implementation of
[2] CoolingGaussian and that of [5] SeqOfBalls.

Set r = 0.1 and δ = 0.05 in order for the next convex body in MMC to have about 10%
of the volume of the previous one; let s.l. be α = 0.10. We set the number of points sampled
in Pi per step to be νN = 1200 + 2d2 and ν = 10. Set the length of the sliding window
n = 2d2 + 250 and the step of HnR t = 1.

1 https://github.com/TolisChal/volume_approximation/tree/v_poly

https://github.com/TolisChal/volume_approximation/tree/v_poly
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Figure 2 Left: the number of steps for for unit cubes in H-representation, d = 5, 10, . . . , 100.
Right: the number of steps for random zonotopes of order 2, d = 5, 10, . . . , 80 . In both plots we use
log10 scale for the y-axis

To study the practical complexity of our method we experimentally correlate the total
number of HnR steps with the dimension. In the right plot in Fig. 2 we compare the number
of steps for random zonotopes. CoolingGaussian fails to estimate volumes for d > 15 as
the upper bound for the number of facets is the bottleneck for this implementation while
SeqOfBalls takes > 1hr for d > 15. In the left plot we notice that our method is faster than
both CoolingGaussian and SeqOfBalls for d ≤ 100. In Table 1 we estimate the volumes of
random zonotopes. The number of phases for high-order zonotopes is m = 1 as our methods
defines just an enclosing ball and applies rejection sampling, whereas for low-order zonotopes
the H-polytope we defined reduces significantly the number of phases and run-time. The
maximum number of phases for zonotopes (up to what our software computes in < 10hr)
is m ≤ 3. None of the volumes of the zonotopes in Table 1 can be computed using exact
computations in practice. To define a random zonotope z-d-k we choose a random direction
for each segment s ∈ S, where

∑
s∈S s, and pick a random length in the interval [0,

√
d].

z-d-k Body order V ol m e steps time

z-10-1000 Ball 100 2.62e+29 1 0.1 0.1400e+04 130.1
z-15-1500 Ball 100 5.00e+45 1 0.1 0.1650e+04 506.1
z-20-2000 Ball 100 2.79e+62 1 0.1 0.2000e+04 1428
z-60-90 Hpoly 1.5 5.81e+82 2 0.1 5.355e+04 943.9
z-80-120 Hpoly 1.5 8.48e+114 3 0.1 12.35e+04 4180
z-100-150 Hpoly 1.5 2.32+149 3 0.1 15.43e+04 10060
z-80-160 Hpoly 2 2.01e+131 3 0.2 11.31e+04 5356
z-100-200 Hpoly 2 5.27e+167 3 0.2 15.25e+04 34110

Table 1 Body the type of body in MMC; order is k/d, V ol the estimated volume; m the number
of phases in MMC; ε the requested error; time the time in seconds; e the input value for error.
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