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Abstract
Simple drawings are those in which (i) every pair of edges have at most one point in common,
and it is either an endpoint or a proper crossing; and (ii) no three edges cross in the same point.
In this paper we study the problem of extending a simple drawing D(G) of a graph G = (V, E),
by adding a set of edges (of the complete graph with vertex set V ) such that the result is a
simple drawing with D(G) as a subdrawing. In the context of rectilinear drawings, the problem
is trivial. In contrast, we prove that finding the maximum amount of edges from a prescribed set
that extend a simple drawing is NP-hard.

1 Introduction

A simple drawing of a graph G (also known as good drawing or as simple topological graph in
the literature) is a drawing D(G) of G in the plane such that every pair of edges share at
most one point that is either a proper crossing (no tangent edges allowed) or an endpoint.
Moreover, no three edges intersect in the same point and edges must not contain other
vertices. In some contexts, such as the study of crossing numbers, simple drawings play a
central role. Despite them being widely studied, there are basic aspects that remain unknown.

The long-standing conjectures on the crossing numbers of Kn and Kn,m, known as the
Harary-Hill and Zarankiewicz’s conjectures, respectively, have drawn particular interest in
the study of simple drawings of complete and complete bipartite graphs. Although these
problems remain open, their intensive study has produced deep results about simple drawings
of Kn [6, 9] and Kn,m [2].

In contrast to what we know about Kn, little is known about simple drawings of general
graphs. In [8] it was observed that, when studying simple drawings of general graphs, it would
be natural to try extend them, by adding the missing edges between non-adjacent vertices,
to simple drawings of complete graphs. One of the main results in this paper suggests that
there is no hope on efficiently deciding when such closure operation can be performed.

Given a simple drawing D(G) of a graph G = (V, E), and a set M of edges of the complete
graph with vertex set V , an extension of D(G) with a set of edges M is a simple drawing
D′(H) of the graph H = (V, E ∪M) that contains D(G) as a subdrawing. If that extension
exists we say the the edge uv can be added to D(G). An extension with one given edge is
not always possible, as shown by Kynčl [7] (in Figure 1a the edge uv cannot be added). We
can extend this example to a simple drawing of K2,4 (Figure 1b) and we can use this to
construct larger drawings of Kn,m in which an edge uv cannot be added. Moreover, Kyncl’s
drawing can be extended to a simple drawing of K6 missing an edge that cannot be added
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(a) Example by Kynčl [7].
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(b) Drawing of K2,4.
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(c) Drawing of K6 \ uv.

Figure 1 Drawings that cannot be extended with the edge uv.

(Figure 1c), and again we can use this drawing to construct larger drawings of Kn missing
an edge that cannot be added.

Extensions have been previously considered in the context of saturated simple drawings,
that is, drawings where no edge can be added [8, 4]. In the context of saturated drawings,
the main interest is on finding the minimum number of edges that a saturated graph on n

vertices can have. This minimum was first shown to be at most 17.5n [8] and later 7n [4].
In this paper, we focus on extensions of simple drawings of general graphs. In Section 2

we show that given a simple drawing D(G) of a graph G = (V, E) and a set M of edges
of the complete graph with vertex set V and with M ∩ E = ∅, it is NP-hard to find the
maximum subset of edges from M that can be added to D(G). In the full version of the
paper we also study the case in which only one edge is to be added. In Section 3 we discuss
these results and present open questions.

2 Hardness of Extending Simple Drawings

In this section we prove the following result:

I Theorem 2.1. Given a simple drawing D(G) of a graph G = (V, E) and a set M of edges
of the complete graph with the vertex set V and with E ∩M = ∅, it is NP-hard to find a
maximum subset of edges M ′ ⊆M that extends D(G).

Our proof of Theorem 2.1 is based on a reduction from the maximum independent set
problem (MIS). An independent set of a graph G = (V, E) is a set of vertices S ⊆ V such
that no two vertices in S are incident to the same edge. The problem of determining the
maximum independent set (MIS) of a given graph is NP-hard in general, and it remains
NP-hard when the input is a planar graph with maximum degree 3 [3, Lemma 1]. We first
describe the construction of a simple drawing D′(G′) given an MIS instance. Then we argue
that for a well selected set of edges M that are not present in D′(G′), finding a maximum
subset M ′ ⊆M that can simultaneously extend D′(G′) is equivalent to finding a maximum
independent set in the input instance.

2.1 Constructing a drawing from a given graph
We begin by introducing our two basic gadgets D1 and D2 (shown in Figure 2). The vertex
gadget D1 consists of a cycle C on four vertices a, v, b, u drawn in the plane without any
crossings. We add two additional vertices x and y to its interior and connect them with an
edge that, starting in x crosses edge bu to the exterior of C, continues through ua to the
interior of C, crosses av to the exterior of C, and vb to the interior of C where it ends in y.

The drawing D1 has the property that the only way of adding edge uv is by following an
arc such as the dashed one depicted in Figure 2a (with maybe also crossing the edge xy, but
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(a) Vertex-gadget D1.
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(b) Edge-gadget D2.
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(c) Constructed drawing obtained by a reduction from the path graph on two vertices w and z.

Figure 2 Basic gadgets and drawings.

staying in the same region). Routing through the exterior of C would force either a double
crossing with edge xy, or a crossing with an edge incident to u or v.

The edge gadget D2 is obtained by adding additional vertices to the interior of D1.
Specifically, we add two vertices d and c and edges ud, vd and uc, vc that are drawn so that
udvc is a crossing-free cycle in the interior of C. Note that since it is crossing-free, the
vertices x and y are in the interior of cycle ubvd. We add two more vertices, called i and j,
in the interior of ucva and we connect them with an edge that after starting in i, crosses
edges uc, ud, vd, vc, and ends in j (without crossing any other edges). See also Figure 2b.

Similarly as in the case of D1, to extend D2 into a simple drawing with the edge uv,
the edge needs to be routed through the interior of C either in the interior of cycle ubvd or
of ucva as depicted in Figure 2b (with maybe also crossing the edge xy or the edge ij but
staying in the same region). Furthermore, it cannot be routed through the interior of udvc

as it would need to intersect either an edge incident to u or v, or cross the edge ij twice.
In Figure 2c we can see a combination of an edge gadget and two vertex gadgets: it

shows a copy De
2 of the gadget D2 (that we will say corresponds to an edge e := wz) over

two different copies, Dw
1 and Dz

1 , of the gadget D1 (that we will say correspond to vertices w

and z, respectively). Notice that we add the label of the vertex or edge corresponding to
the gadget (in this case either w or z or e) as a superindex. Since the region where both
vwuw and vzuz can be drawn is forced, adding both prevents veue from being added. Adding
either only edge vwuw or only edge vzuz leaves exactly one possible region for edge veue.

We have all the main ingredients for our construction. Suppose that we are given a
planar graph G = (V, E) with maximum degree at most 3. This graph admits a 2-page
book embedding D(G) [5, 1]. In a 2-page book embedding all the vertices are placed on a
(horizontal) line and the edges are arcs lying either in the upper half-plane on in the lower
one and there are no proper crossings. The following lemma shows that replacing each vertex
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w ∈ V in the drawing by a vertex gadget Dw
1 and each edge e ∈ E by an edge gadget De

2,
we construct a simple drawing D′(G′).

I Lemma 2.2. Given a 2-page book embedding D(G) of a graph G = (V, E), we can replace
every vertex by a vertex gadget and every edge by an edge gadget to obtain a simple drawing.

Proof. We will show that the copies {De
2 : e ∈ E} can be added to

⋃
w∈V Dw

1 such that for
every edge e ∈ E incident to w and z (w, z ∈ V ), Dw

1 ∪Dz
1 ∪De

2 is as in Figure 2c (up to
interchanging the indices w and z), and the resulting drawing is a simple drawing.

First, for each vertex w ∈ V we place the gadget Dw
1 in its position, so all the copies of D1

lie (equidistant) in a horizontal line. For the edges of G, since the drawing in Figure 2c is not
symmetric, we choose an orientation. We orient all the edges in the 2-page book embedding
D(G) from left to right. We start adding the corresponding D2 gadgets from left to right and
from the shortest edges to the longest (where the length is the Euclidean distance between
the endpoints). For an edge wz the intersections of the gadget Dwz

2 (i) with the edges uwaw

and uwbw are placed to the left of all the previous intersections of other edge gadgets with
that edge; (ii) with the edge vwbw are placed to the right of all the previous intersections
with that edge; (iii) with the edge vwaw are placed to the right of previous intersections with
gadgets Dwt

2 and to the left of previous intersections with gadgets Dtw
2 ; (iv) with the edges

uzaz and uzbz are placed to the left of the previous intersections with gadgets Dtz
2 (v) with

the edge vzbz are placed to the left of all previous intersections; and (vi) with the edge vzaz

are placed to the left of all previous intersections with gadgets Dtz
2 . See Figure 3.

Moreover, the segments of some of the edges in the edge gadgets connecting from one
vertex gadget to another vertex gadget can be drawn as strips in either the upper or lower
half-plane with respect to the horizontal line. In those strips, segments of edges in the same
strip don’t cross and segments of edges in different strips cross at most once. See Figure 3.

Since neither of the gadgets of two incident edges cross, and edges between different
gadgets are vertex-disjoint, we only have to worry about edges from different gadgets crossing
more than once. By construction, no edge in an edge gadget intersects more than once with
an edge in a vertex gadget. Thus, it remains to show that any two edges e1 and e2 from two
distinct gadgets cross at most once. Such two edges are included in a subgraph H of G with
exactly four vertices. The drawing induced by the four vertex gadgets and the at most six
edge gadgets is homeomorphic to a subdrawing of the drawing in Figure 3. It is routine to
check that this drawing a simple drawing, and thus e1 and e2 cross at most once. J

2.2 Reduction from Maximum Independent Set
For the decision version of the problem, given a planar graph G = (V, E) with vertex degree
at most 3 and a constant k, we reduce the problem of deciding if G has an independent set
of size k to the problem of deciding if the simple drawing D′(G′) with a candidate set of
edges M (where M = {uwvw : w ∈ V } ∪ {ueve : e ∈ E}) can be extended with a set of edges
M ′ ⊆M with cardinality |M ′| = |E|+ k.

I Lemma 2.3. The construction exhibited in the previous subsection is a polynomial-time
reduction from independent set in planar maximum degree 3 graphs.

Proof. To show the correctness of the (polynomial) reduction we first show that if G has
an independent set I of size k then we can extend D′(G′) with a set M ′ of |E|+ k edges of
M . Clearly, the k edges {uwvw : w ∈ I} can be added to D′(G′) by the construction of the
gadgets. Since I is an independent set, each edge has at most one endpoint in I. Thus, in
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every edge gadget De
2 at most one of the two possibilities for adding the edge ueve is blocked

by the previous k added edges. We therefore can also add the |E| edges {ueve : e ∈ E}.
Conversely, assume that the set M ′ ⊂ M of |E| + k edges can be added to D′(G′). If

the set of vertices {w : uwvw ∈M ′} is an independent set of G, then we are done, since at
most |E| edges of the added ones can be from edge gadgets, so at least k are from vertex
gadgets. Otherwise, there are two edges uwvw and uzvz in M ′ such that the corresponding
vertices w, z ∈ V are connected by the edge wz ∈ E. This implies that the edge uwzvwz

belongs to M but it cannot be in M ′. By removing the edge uwvw and adding the edge
uwzvwz to D′(G′) we obtain another valid extension with the same cardinality but one less
edge belonging to a vertex gadget. Iteratively repeating this, we end with an extension N of
D′(G′) that has cardinality |E|+ k and such that the set of vertices {w : uwvw ∈ N} is an
independent set of G of size at least k. J

3 Conclusions

In this paper we showed that, given a simple drawing D(G) of a graph G = (V, E) and
a prescribed set M of edges of the complete graph with vertex set V , it is NP-hard to
find the maximum number of edges from M that can be added to D(G) such that the
resulting drawing is simple. Focusing on the case |M | = 1, in the full version of this
paper, on the one hand, we considered the problem in a dual setting and showed that this
slight generalization is NP-complete and, on the other hand, we found sufficient conditions
guaranteeing a polynomial-time decision. We hope that the work done in this direction paves
the way to show the following:

I Conjecture 1. Given a simple drawing D(G) of a graph G and a pair u, v of non-adjacent
edges, we can decide in polynomial time whether we can add uv to D(G).

Finally, modifying both the examples in Figure 1 and a previous example in [8, Figure
11] one can obtain arbitrarily large non-extensible drawings (where a given edge cannot be
added) of graphs including complete bipartite graphs, complete graphs missing one edge, and
matchings. Moreover, a modification of [8, Figure 1] shows that there are arbitrarily large
examples that cannot be extended with an edge but such that the removal of any vertex or
edge allows it to be extensible with any missing edge. So there is no hope of characterizing
non-extensible drawings in terms of subdrawings. It is also not true that any graph with no
isolated points has a non-extensible drawing, as any drawing of K1,m can be extended with
any missing edge. This motivates the following problem:

I Problem 1. Characterize all graphs that admit a non-extensible drawing.
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