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Abstract
We study a variant of the median problem for a collection of point sets in high dimensions. This
generalizes the geometric median as well as the (probabilistic) smallest enclosing ball (pSEB)
problems. Our main objective and motivation is to improve the previously best algorithm for
the pSEB problem by reducing its exponential dependence on the dimension to linear. This is
achieved via a novel combination of sampling techniques for clustering problems in metric spaces
with the framework of stochastic subgradient descent. As a result, the algorithm becomes appli-
cable to shape fitting problems in Hilbert spaces of unbounded dimension via kernel functions.
We present an exemplary application by extending the support vector data description (SVDD)
shape fitting method to the probabilistic case. This is done by simulating the pSEB algorithm
implicitly in the feature space induced by the kernel function.

1 Introduction

The (probabilistic) smallest enclosing ball (pSEB) problem in Rd is to find a center that
minimizes the (expected) maximum distance to the input points (see Definition 3.1). It
occurs often as a building block for complex data analysis and machine learning tasks like
estimating the support of high dimensional distributions, outlier detection, novelty detection,
classification and robot gathering [5, 15, 16, 18]. It is thus very important to develop efficient
algorithms for the base problem. This involves reducing the number of points but also keeping
the dependence on the dimension as low as possible. We study both objectives and focus on
a small dependence on the dimension. This is motivated as follows. Kernel methods are a
common technique in machine learning. These methods implicitly project the d-dimensional
input data into much larger dimension D where simple linear classifiers or spherical data
fitting methods can be applied to obtain a non-linear separation or non-convex shapes in the
original d-dimensional space. The efficiency of kernel methods is usually not harmed since
inner products and thus distances in the D-dimensional space can be evaluated in O(d) time.

In some cases, however, a proper approximation relying on sampling and discretizing the
ambient solution space may require a polynomial or even exponential dependence on D. The
algorithm of Munteanu et al. [11] is the only fully polynomial time approximation scheme
(FPTAS) and the fastest algorithm to date for the pSEB problem in fixed dimension. However,
it suffers from the stated problems. In particular, the number of realizations sampled by
their algorithm had a linear dependence on D stemming from a ball-cover decomposition
of the solution space. The actual algorithm made a brute force evaluation (on the sample)
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of all centers in a grid of exponential size in D. This is prohibitive in the setting of kernel
methods since the implicit feature space may have infinite dimension. Even if it is possible
to exploit the up to n-dimensional subspace spanned by n points in infinite dimensions, we
would still have D = n � d leading to exponential time algorithms. To make the pSEB
algorithm viable in the context of kernel methods and generally in high dimensions, it is
desirable to reduce the dependence on the dimension to a small polynomial occurring only in
evaluations of inner products and distances of low dimensional vectors.

Related work: The study of probabilistic clustering problems was initiated by Cormode
and McGregor [7]. They developed approximation algorithms for the probabilistic settings
of k-means, k-median as well as k-center clustering. Munteanu et al. [11] gave the first
fully polynomial time (1 + ε)-approximation scheme (FPTAS) for the pSEB problem, in
fixed dimensions, in time O(nd/εO(1) + 1/εO(d)). We reduce its exponential dependence
on d to linear, using sampling techniques. The stochastic subgradient descent from convex
optimization [6, 12] is a quite popular and often only implicitly used technique in the core-
set literature [2, 4, 10]. Indyk and Thorup [8, 17] showed that a uniform sample of size
O(logn/ε2) is sufficient to approximate the discrete metric 1-median within a factor of (1+ε).
We adapt these ideas to find a (1 + ε)-approximation to the best center in our setting.

Kernel functions simulate an inner product space in large or even unbounded dimensions
but can be evaluated via simple low dimensional vector operations in the original dimension
of input points [14]. This enables simple spherical shape fitting via a smallest enclosing ball
algorithm in the high dimensional feature space, which implicitly defines a more complex
and even non-convex shape in the original space. The smallest enclosing ball problem in
kernel spaces is well-known as the support vector data description (SVDD) problem [16, 18].

1.1 Contributions and outline

We extend the geometric median in Euclidean space to the more general problem of finding
a center c ∈ Rd that minimizes the sum of maximum distances to sets of points in a given
collection of N point sets. We show how to solve this problem via estimation and sampling
techniques combined with a stochastic subgradient descent algorithm, see Theorem 2.2.

The elements in the collection are sets of n points in Rd. In [11] they were summarized
via strong coresets of size 1/εΘ(d). This is not an option in high dimensions. Reviewing
the techniques of [1] we show that no reduction below min{n, exp(d1/3)} is possible unless
sacrificing an additional approximation factor of roughly

√
2, see Theorem 2.3. However, it is

possible to achieve roughly a (
√

2 + ε)-approximation in streaming via the blurred-ball-cover
[1] of size O(1/ε3 · log 1/ε), and in an off-line setting via weak coresets [2, 3] of size O(1/ε).

We show in Theorem 3.2 how Theorem 2.2 improves the previously best FPTAS for
the pSEB problem from O(dn/ε3· log 1/ε+ 1/εO(d)) to O(dn/ε4· log2 1/ε). In particular the
dependence on the dimension d is reduced from exponential to linear and more precisely
occurs only in distance evaluations between points in d-dimensional Euclidean space, but not
in the number of sampled points nor in the number of candidate centers to evaluate.

This enables working in very high D-dimensional Hilbert spaces whose inner products and
distances are given implicitly via positive semidefinite kernel functions. These functions can
be evaluated in O(d) time although D is large or even unbounded. We extend the well-known
SVDD method to the probabilistic case, see Theorem 3.3.
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1.2 General notation
We denote the set of positive integers up to n ∈ N by [n] = {1, . . . , n}. For any convex
function f : Rd → R we denote by ∂f(x) =

{
g ∈ Rd | ∀y ∈ Rd : f(x)− f(y) ≤ 〈g, x− y〉

}
the

set of subgradients of f at x. We assume the error parameter satisfies 0 < ε < 1/9.

2 A generalized median problem

The pSEB problem can be reduced to two different types of 1-median problems [11]. One of
them is defined on the set of all non-empty locations in Rd where probabilistic points may
appear, equipped with the Euclidean distance. The other is defined on the collection of all
possible realizations of probabilistic point sets, and the distance measure between a center
c ∈ Rd and a realization Pi ⊂ Rd is m(c, Pi) = maxp∈Pi

‖c− p‖. We state a generalized
median problem that we call the set median problem and covers both of these cases.

I Definition 2.1 (set median problem). Let P = {P1, . . . , PN} be a family of finite non-empty
sets where ∀i ∈ [N ] : Pi ⊂ Rd and n = max{|Pi| | i ∈ [N ]}. The set median problem on P
consists in finding a center c ∈ Rd that minimizes the cost function

f(c) =
N∑

i=1
m(c, Pi).

Note that in case of singleton sets, the set median problem is equivalent to the well-known
Fermat-Weber problem (a.k.a. 1-median or geometric median). Also, for N = 1 it coincides
with the smallest enclosing ball or 1-center problem. For both of these problems there are
known algorithms based on the subgradient method from convex optimization [2, 6].

The Lipschitz constant of the function f can be bounded by N . We want to minimize
f via the subgradient method, see [12]. For that sake we need to compute a subgradient
g(ci) ∈ ∂f(ci) at the current center ci. The subgradient computation takes O(dnN) time to
calculate, since in each of the N terms of the sum we maximize over |Pi| ≤ n distances in d
dimensions to find a point in Pi that is furthest away from c. To remove the dependence
on N we replace the exact subgradient g(ci) by a uniform sample of only one nonzero term
which points into the right direction in expectation. Then we can adapt the deterministic
subgradient method from [12] using the random unbiased subgradient in such a way that the
result is in expectation a (1 + ε)-approximation to the optimal solution. Given an initial
center c0, a fixed step size s, and a number of iterations `, our algorithm iteratively picks
a set Pj ∈ P uniformly at random and chooses a point pj ∈ Pj that attains the maximum
distance to the current center. This point is used to compute an approximate subgradient.
The algorithm finally outputs the best center found in all iterations.

To bound in expectation the quality of the output of our algorithm to be a (1 + ε)-
approximation, we choose the values of parameters c0, s, and ` in an appropriate way. It
suffices to run our algorithm for ` ∈ O(1/ε2) iterations, and to choose c0 to be an arbitrary
point in a randomly chosen input set from P. We estimate the average cost on a sample of
size 1/ε [9], which bounds the value of s. It remains to describe how to find the best center
out of all iterations of our algorithm efficiently. We cannot do this exactly since evaluating
the cost even for one single center takes time O(dnN). However, we use a sampling technique
[8, 17] (cf. the related work above), adapted here to work in our setting, to find a point
that is a (1 + ε)-approximation of the best center in a finite set of candidate centers. The
main difference is that in the original work the set of input points and the set of candidate
solutions are identical. In our setting, however, we have that the collection of input sets and
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the set of candidate solutions may be completely distinct. Putting all pieces together we
have the following Theorem.

I Theorem 2.2. Consider an input P = {P1, . . . , PN}, where for every i ∈ [N ] we have
Pi ⊂ Rd and n = max{|Pi| | i ∈ [N ]}. There exists an algorithm that computes a center c̃
that is with constant probability a (1 + ε)-approximation to the optimal solution c∗ of the set
median problem (see Definition 2.1). Its running time is O(dn/ε4 · log2 1/ε).

The removal of the linear dependence on n for the maximum distance computations was
achieved in [11] via a grid based strong coreset of size 1/εΘ(d). However, here we focus on
reducing the dependence on d, and exponential is not an option if we want to work in high
dimensions. It turns out that without introducing an exponential dependence on d, we would
have to lose a constant approximation factor. We adapted the techniques of [1] to show
that no small data structure can exist for answering maximum distance queries to within a
factor of less than roughly

√
2. In comparison to the previous results, it is not limited to the

streaming setting, as in [1], and it is not restricted to subsets of the input, as in [13].

I Theorem 2.3. Any data structure that, with probability at least 2/3, α-approximates
maximum distance queries on a set S ⊂ Rd of size |S| = n, for α <

√
2
(
1− 2/d1/3), requires

Ω
(
min{n, exp

(
d1/3)}) bits of storage.

3 Applications

3.1 Probabilistic smallest enclosing ball
We apply our result to the pSEB problem, as given in [11]. In such a setting, the input is
a set D = {D1, . . . , Dn} of n discrete and independent probability distributions. The i-th
distribution Di is defined over a set of z possible locations qi,j ∈ Rd ∪ {⊥}, for j ∈ [z], where
⊥ indicates that the i-th point is not present in a sampled set, i.e., qi,j = ⊥ ⇔ {qi,j} = ∅. We
call these points probabilistic points. Each location qi,j is associated with the probability pi,j ,
such that

∑z
j=1 pi,j = 1, for every i ∈ [n]. Thus the probabilistic points can be considered

as independent random variables Xi. A probabilistic set X of probabilistic points is also a
random variable.

I Definition 3.1. ([11]) Let D be a set of n discrete distributions, where each distribution
is defined over z locations in Rd ∪ {⊥}. The pSEB problem is to find a center c∗ ∈ Rd that
minimizes the expected smallest enclosing ball cost: c∗ ∈ argminc∈Rd E [m(c,X)], where the
expectation is taken over the randomness of X ∼ D.

Our pSEB algorithm adapts the framework of [11], but plugging in Theorem 2.2 it differs
mainly in three points. First, the number of samples had a dependence on d hidden in the
O-notation. This is not the case any more. Second, the sampled realizations are not sketched
via coresets of size 1/εΘ(d) any more. Third, the running time of the actual optimization
task is reduced instead of an exhaustive grid search.

I Theorem 3.2. Let D be a set of n discrete distributions, where each distribution is defined
over z locations in Rd ∪ {⊥}. Let c̃ ∈ Rd be the output of our pSEB algorithm on input D.
Let ε < 1/9. With constant probability c̃ is a (1 + ε)-approximation for the pSEB problem,

EX [m(c̃, X)] ≤ (1 + ε) minc∈Rd EX [m(c,X)] .

The running time of our pSEB algorithm is O(dn · (z/ε3 · log 1/ε+ 1/ε4 · log2 1/ε)).



REFERENCES 6:5

Comparing to the result of [11], the running time is reduced from O(dnz/εO(1) + 1/εO(d)) to
O(dnz/εO(1)). The factor of d plays a role only in computations of distances between two
points in Rd. Further the sample size and the number of centers that need to be evaluated
do not depend on the dimension d any more. This is crucial in the following.

3.2 Probabilistic support vector data description (pSVDD)
We consider the SVDD problem, i.e., the SEB problem in kernel spaces, and show how to
extend it to its probabilistic version. Let K : Rd × Rd → R be a positive semidefinite kernel
function with feature map ϕ : Rd → H, where H is a high dimensional Hilbert space, say RD,
where D � d [14].

I Theorem 3.3. Let D be a set of n discrete distributions, where each distribution is defined
over z locations in Rd ∪ {⊥}. There exists an algorithm that implicitly computes c̃ ∈ H that
with constant probability is a (1 + ε)-approximation for the probabilistic SVDD problem. It is

EX [m(c̃, ϕ(X))] ≤ (1 + ε) minc∈H EX [m(c, ϕ(X))] ,

where the expectation is taken over the randomness of X ∼ D, and ϕ(X) = {ϕ(xi) | xi ∈ X}.
The running time of the algorithm is O(dn ·

(
z/ε3· log 1/ε+ 1/ε8· log2 1/ε

)
).
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