
Simplification of Polyline Bundles
Joachim Spoerhase1, Sabine Storandt2, and Johannes Zink3

1 Aalto University, Finland
joachim.spoerhase@aalto.fi

2 AG Algorithmik, Universität Konstanz.
storandt@inf.uni-konstanz.de

3 Lehrstuhl für Informatik I, Universität Würzburg.
zink@informatik.uni-wuerzburg.de

Abstract
We propose a generalization to the well-known problem of polyline simplification in two variants.
We are given, instead of a single polyline, a set of polylines possibly sharing some edges and
vertices. We show that this more general problem is NP-hard by a reduction from Max-2-SAT.
On the positive side, we show fixed-parameter tractability in the number of shared vertices.

1 Introduction

Visualization of geographical information is a task of high practical relevance, e.g., for the
creation of online maps. Such maps are most helpful if the information is neatly displayed
and can be grasped quickly and unambiguously. This means that the full data often needs to
be filtered and abstracted. Many important elements in maps like borders, streets, rivers, or
trajectories are displayed as polylines (also known as polygonal chains). For such a polyline, a
simplification is supposed to be as sparse as possible and as close to the original as necessary.
A simplified polyline is constructed by a subset of vertices of the original polyline such that
the (local) distance to the original polyline does not exceed a specifiable value according to a
given distance measure, e.g., the Hausdorff distance [4] or the Fréchet distance [1]. The first
such algorithm, which is still of high practical importance, was proposed by Ramer [7] and
by Douglas and Peucker [3]. Hershberger and Snoeyink [5] proposed an implementation of
this algorithm that runs in O(n logn) time, where n is the number of vertices in the polyline.
It is a heuristic algorithm as it does not guarantee optimality (or something close to it) in
terms of retained vertices. An optimal algorithm in this sense was first proposed by Imai
and Iri [6]. Chan and Chin [2] improved the running time of this algorithm to O(n2).

From a Single Polyline to a Bundle of Polylines

On a map, there are usually multiple polylines to display. Such polylines may share vertices
and edges sectionwise. For example, when considering (GPS) trajectories like car-routes,
different trajectories may partially share edges and vertices when cars have been on the same
roads. Another example is a schematic map of a public transport network. Bus lines are the
polylines and the vertices are the stations. In the city center, there are many different bus
lines at the same stations that fan out when going to the outer districts, where they possibly
share stations with further different bus lines. One might consider simplifying the polylines
of a bundle independently. This has some drawbacks, though. On the one hand, the total
complexity might even increase when the shared parts are simplified in many different ways.
On the other hand, it might suggest a misleading picture when we remove common edges
and vertices of some polylines, but not of all. The viewer might get the wrong impression
that the one route has taken some street or passed through some area and the other has
not, while in reality both took the same route in this place. E.g., if there is only one way to
35th European Workshop on Computational Geometry, Utrecht, The Netherlands, March 18–20, 2019.
This is an extended abstract of a presentation given at EuroCG’19. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

58:2 Simplification of Polyline Bundles

(a) initial bundle of polylines (b) simplified bundle of polylines

Figure 1 Example of a bundle of three polylines before and after the simplification.

(a) initial bundle with shortcuts (b) optimal for Min-Edges (c) optimal for Min-Vertices

Figure 2 Example of three polylines, where the goals Min-Edges and Min-Vertices differ.

pass through some point, then the simplifications of all polylines going through this point
should still share the corresponding vertex or edge if it is kept. Therefore, we require that a
vertex in a simplification of a bundle of polylines is either kept for all polylines containing it
or discarded in all polylines. In Figure 1, we give an example of a simplification of a bundle
of polylines. Natural minimization goals are to minimize either the total number of vertices
(Min-Vertices) or the total number of line segments, i.e., edges (Min-Edges). Both goals
generalize the previously described minimization problem for a single polyline. However,
they may differ from each other like in Figure 2. In this extended abstract, we focus on
Polyline-Bundle-Simplification with the goal Min-Edges to be formalized next. With
small adaptions, our results also hold for the goal Min-Vertices.

2 Problem Definition

In an instance of the problem Polyline-Bundle-Simplification with goal Min-Edges,
we are given a set V = {v1, . . . , vn} of n points in the plane, and a set L = {L1, . . . , L`}
of ` polygonal chains Li = (si, . . . , ti) represented as lists of vertices from V , as well as a
distance parameter ε referring to a distance measure d (e.g., Hausdorff distance). The goal is
to obtain a subset V ∗ ⊆ V of the points, such that for each Li its induced simplification Si,
which is Li ∩ V ∗ while preserving the order of vertices,

contains the start and the end vertex of Li, i.e., si, ti ∈ Si, and
has at most a distance of ε to Li, i.e., for each line segment (a, b) of Si and the

J. Spoerhase, S. Storandt, and J. Zink 58:3

a b

c d

e

︸ ︷︷ ︸︸ ︷︷ ︸ ︸ ︷︷ ︸
3ε 7ε4ε

2ε

︸︷︷︸

︸ ︷︷ ︸
3ε

ε

Figure 3 The literal-gadget depicted in black with valid (invalid) shortcuts in green (red).

corresponding sub-polyline of Li from a to b, abbreviated by Li[a, . . . , b], we have
d((a, b), Li[a, · · · , b]) ≤ ε,

and the total number of edges induced by V ∗ is minimized. Here an edge (v, w) is induced
by V ∗ if there exists at least one polyline Li with Li[v, . . . , w] ∩ V ∗ = {v, w}. Note that we
do not count the edge multiple times if there are multiple such polylines.

3 NP-Hardness

The problem Polyline-Bundle-Simplification with goal Min-Edges is NP-hard even for
only two polylines (hence not FPT in ` unless P = NP). We show this by a reduction from
Max-2-SAT, which is known to be NP-complete. In this reduction, we model a given 2-SAT
formula by an instance of Polyline-Bundle-Simplification with goal Min-Edges using
two polylines. Our reduction uses three types of gadgets, which allow some shortcuts inside
the gadgets: literal-gadgets, variable-synchronization-gadgets, and clause-synchronization-
gadgets. We obtain the first polyline by connecting all literal-gadgets such that no new
shortcuts are possible. The second polyline is the connection of all variable-synchronization-
gadgets and all clause-synchronization-gadgets such that no new shortcuts are possible. Next,
we specify the three gadgets of our reduction.

Literal-Gadget. We model each literal of each clause by a literal-gadget. In Figure 3, a
literal-gadget for modeling a positive literal x is depicted. For negative literals, it is the same
but mirrored horizontally. It consists of five serially connected vertices (drawn in black).
Valid shortcuts are dashed in green, invalid shortcuts in red. The vertices a and e cannot be
skipped and the inner vertices b, c, and d are shared with the second polyline. There are
three mutually exclusive shortcuts: skipping b and c, skipping c, and skipping d. Skipping c
(together with or without b) or d is always possible and corresponds to the truth assignment
of this clause. Since the number of edges is minimized, the shortcut that skips b and c will
be chosen whenever possible (in compliance with the variable-synchronization-gadget, with
which c and d are shared, and the clause-synchronization-gadget, with which b is shared).
The interpretation is as follows: if c is skipped, x is set to true; if d is skipped, x is set to
false; if b is skipped, this literal satisfies its clause. So b is the “critical” vertex indicating
that a clause is satisfied. In a literal-gadget for a negative literal, b is between d and e, and
not between a and c. Clearly, all vertices lie on a grid point of a grid with square length ε.

Variable-Synchronization-Gadget. For each variable, we use a variable-synchroniza-
tion-gadget to enforce a consistent truth assignment for a variable xi. In Figure 4, a
variable-synchronization-gadget for synchronizing six literal-gadgets is depicted. Shortcuts
are depicted as dashed segments in the color of its polyline. The number of vertices in the

EuroCG’19

58:4 Simplification of Polyline Bundles

ε

¬xi xi

ε

ε

(a) The gadget alone.

ε

¬xi xi

ε

ε

(b) The combination of a variable-synchronization-gadget (black) and
literal-gadgets (orange). Only 2 of 6 literal-gadgets are drawn here.

Figure 4 The variable-synchronization-gadget.

section going zigzag corresponds to the number of occurrences of this variable—regardless
of positive or negative. Except for the two vertices on the top and the two vertices on the
bottom of the gadget, all vertices are shared with the literal gadgets—each two vertices
with the same y-coordinate are part of the same literal gadget (the vertices c and d in
Figure 3). There are only two shortcuts: skipping all shared left vertices and skipping all
shared right vertices. The interpretation is as follows: if we skip the left vertices and keep
the right vertices, xi is set to true and the other way round xi is set to false. An inconsistent
assignment is not possible: we cannot take both shortcuts, since we cannot skip both lower
vertices in a literal gadget. Taking none of these shortcuts would violate the minimality,
since consistently skipping the same lower vertex in the literal gadgets is always possible
(otherwise we cannot take any shortcut of the concerned literal-gadgets). Again, all vertices
lie on a grid point of a grid with square length ε.

Clause-Synchronization-Gadget. We use a clause-synchronization-gadget for each clause
with two literals. Its purpose is to reward satisfied clauses uniformly, i.e., it prohibits “double”
satisfied clauses from being rewarded better than “once” satisfied clauses. In Figure 5, a
clause-synchronization-gadget is depicted in black. It consists of four serially connected
vertices, which connect two literal-gadgets (gray color) that correspond to two literals of
the same clause. The inner vertices b1 and b2 are shared with the two b-vertices of these
literal-gadgets (compare with Figure 3). Valid shortcuts are dashed in green, invalid shortcuts
in red. There are two mutually exclusive shortcuts: skipping b1 and skipping b2. If one
of them is used, then the b-vertex of one literal-gadget is skipped. This is only possible
when the assigned truth value satisfies the corresponding literal, which in turn satisfies the
corresponding clause. We can say: for each satisfied clause, we get the reward of reducing the
total number of edges by two when we skip such a b-vertex (the one edge in the literal-gadget,
the other edge in the clause-synchronization-gadget), which we cannot remove otherwise.
Since there is no shortcut from s to t, it is not possible to skip both b-vertices corresponding
to the same clause and, therefore, also not possible to get a greater reward if both literals
of the same clause are set to true. Since we minimize the number of remaining edges, as
many clauses as possible are satisfied this way because if at least one of the corresponding
literal-gadgets is set true, we clearly can also skip the b-vertex of this literal-gadget. Hence,
only if none of the two b-vertices is skipped, the corresponding clause remains unsatisfied.

J. Spoerhase, S. Storandt, and J. Zink 58:5

ε

s

b1

b2

t

l2

l1

Figure 5 The clause-synchronization-gadget.

We can construct this gadget such that its vertices are on grid points of a polynomial-size
grid with square length ε. The vertices b1 and b2 are already on the grid. Consider the grid
points l1, l2 to the left of them with distance ε. Our shortcuts s→ b2 and b1 → t will lie on
the lines defined by l1b2 and b1l2, respectively. Lengthen the line segments l1b2 and b1l2 at l1
and l2 by a factor of 2 (we use 1.5 in Figures 5 and 6 to keep it overseeable)—the endpoints
are the grid points that will be our s and t. Observe that the shortcut s→ t is always invalid
if we place all variable-synchronization-gadgets in a column above the other with sufficient
vertical spacing (constant in ε).

Complete Reduction

Given a Max-2-SAT instance, we can reduce it in polynomial time to a Polyline-Bundle-
Simplification instance with goal Min-Edges: set ε to 1 and create for each variable
a variable-synchronization-gadget with size equal to the number of occurrences of this
variable and place them one above the other onto an integer grid. This defines exact
positions for the literal-gadgets and then for the clause-synchronization-gadgets. Connect
all literal-gadgets (first polyline) and, separately, all variable-synchronization-gadgets and
clause-synchronization-gadgets (second polyline) in a shortcut-free way. This is possible on
a polynomial-size grid. From a solution minimizing the number of edges of this polyline
bundle simplification instance with two polylines, we can immediately obtain a solution of
the corresponding Max-2-SAT instance—the total number of removed b-vertices equals the
maximum number of satisfiable clauses. Thus, we conclude the following theorem:

I Theorem 3.1. Polyline-Bundle-Simplification with goal Min-Edges is NP-hard
even for two polylines. J

We give a small but full example to the presented reduction in Figure 6. We use the
2-SAT formula (x1 ∨ x2) ∧ (¬x1 ∨ x3) ∧ (¬x3). Note that the last clause (¬x3) consists of
only one literal and, therefore, does not have a clause-synchronization-gadget.

EuroCG’19

58:6 Simplification of Polyline Bundles

ε

¬x1 x1

¬x2 x2

¬x3 x3

(a) first polyline (connecting literal-gadgets)

ε

¬x1 x1

¬x2 x2

¬x3 x3

(b) second polyline (connecting both types of
synchronization-gadgets)

ε

¬x1 x1

¬x2 x2

¬x3 x3

(c) both polylines

Figure 6 Full example of our NP-hardness reduction: (x1 ∨ x2) ∧ (¬x1 ∨ x3) ∧ (¬x3)

J. Spoerhase, S. Storandt, and J. Zink 58:7

4 Fixed-Parameter Tractability

For both goals (Min-Edges or Min-Vertices) our problem is fixed-parameter tractable in
the number of shared vertices, that is, vertices contained in more than one polyline or multiple
times in the same polyline. We call the set of those vertices Vshared and let k := |Vshared|.

I Theorem 4.1. Polyline-Bundle-Simplification is fixed-parameter tractable in k.

Proof sketch. We sketch an algorithm that solves Polyline-Bundle-Simplification
in O(2k · `n3) time. The idea is to fix for each subset V ′ ⊆ Vshared the vertices in V ′ to be
contained in V ∗ and the vertices in Vshared \ V ′ to be excluded from V ∗. Then the optimal
simplification of the remaining parts, which are simple polylines, can be computed in the
classic way [6]. In the end, we take the best solution among all 2k subsets of Vshared. J

5 Conclusion

We have generalized the well-known problem of polyline simplification from a single polyline
to multiple interfering polylines. Unlike the special case of a single polyline, simplifying a
bundle of polylines turned out to be NP-hard. The problem is fixed-parameter tractable in
the number of shared vertices, but not in the number of polylines.

The NP-hardness result gives rise to the question of approximability. It can be shown that
the reduction from Max-2-SAT gives even APX -hardness. Therefore, it is an interesting
question if there is a constant-factor approximation algorithm for our problem.

References
1 Helmut Alt and Michael Godau. Computing the Fréchet distance between two

polygonal curves. International Journal of Computational Geometry and Applications,
5:75–91, 1995. URL: https://doi.org/10.1142/S0218195995000064, doi:10.1142/
S0218195995000064.

2 W. S. Chan and F. Chin. Approximation of polygonal curves with minimum number of
line segments or minimum error. International Journal of Computational Geometry and
Applications, 6(1):59–77, 1996. URL: https://doi.org/10.1142/S0218195996000058,
doi:10.1142/S0218195996000058.

3 David H. Douglas and Thomas K. Peucker. Algorithms for the reduction of the number of
points required to represent a digitized line or its caricature. Cartographica, 10(2):112–122,
1973.

4 Felix Hausdorff. Grundzüge der Mengenlehre. Veit and Company, Leipzig, 1914. URL:
https://archive.org/details/grundzgedermen00hausuoft.

5 John Hershberger and Jack Snoeyink. Speeding up the douglas-peucker line-simplification
algorithm. In Proc. 5th Intl. Symp. Spatial Data Handling (SDH’92), pages 134–143. IGU
Commission on GIS, 1992.

6 Hiroshi Imai and Masao Iri. Polygonal approximations of a curve – formulations and
algorithms. In Godfried T. Toussaint, editor, Computational Morphology, volume 6
of Machine Intelligence and Pattern Recognition, pages 71 – 86. North-Holland, 1988.
URL: http://www.sciencedirect.com/science/article/pii/B9780444704672500114,
doi:https://doi.org/10.1016/B978-0-444-70467-2.50011-4.

7 Urs Ramer. An iterative procedure for the polygonal approximation of plane curves. Com-
puter Graphics and Image Processing, 1(3):244–256, 1972. URL: https://doi.org/10.
1016/S0146-664X(72)80017-0, doi:10.1016/S0146-664X(72)80017-0.

EuroCG’19

https://doi.org/10.1142/S0218195995000064
http://dx.doi.org/10.1142/S0218195995000064
http://dx.doi.org/10.1142/S0218195995000064
https://doi.org/10.1142/S0218195996000058
http://dx.doi.org/10.1142/S0218195996000058
https://archive.org/details/grundzgedermen00hausuoft
http://www.sciencedirect.com/science/article/pii/B9780444704672500114
http://dx.doi.org/https://doi.org/10.1016/B978-0-444-70467-2.50011-4
https://doi.org/10.1016/S0146-664X(72)80017-0
https://doi.org/10.1016/S0146-664X(72)80017-0
http://dx.doi.org/10.1016/S0146-664X(72)80017-0

	Introduction
	Problem Definition
	NP-Hardness
	Fixed-Parameter Tractability
	Conclusion

