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Abstract
Laman graphs are the minimally rigid graphs in the plane. We present two algorithms for
recognizing planar Laman graphs. A simple algorithm with running time O(n3/2) and another one
with running time O(n log3 n) based on latest planar network flow algorithms. Both improve upon
the previously fastest algorithm for general graphs by Gabow and Westermann [Algorithmica, 7(5-
6):465–497, 1992] with running time O(n

√
n logn).

1 Introduction

Let G = (V,E) be a graph with n vertices. The graph G is called a Laman graph if it has
2n− 3 edges and every subset V ′ ⊆ V induces a subgraph with no more than 2|V ′| − 3 edges.
A bar-joint framework is a physical structure made from fixed-length bars that are linked by
universal joints (allowing 360◦ rotations) at their endpoints. A bar-joint framework is flexible
if it has a motion other than a global rotation or translation. A nonflexible framework is
called rigid. Moreover it is called minimally rigid, if it is rigid, but it becomes flexible after
removing any bar. Interestingly, in 2d a bar-joint framework (in a generic configuration) is
minimally rigid, if and only if its underlying graph is a Laman graph.

Various characterizations of Laman graphs are known [9, 14, 15]. The class of plane
Laman graphs provides even more structure [8, 12]. Of particular interest for our result is
the following geometric characterization: A geometric graph is a pointed pseudotriangulation
(PPT) if each inner face contains exactly three angles less than π, called small, and every
vertex is incident to an angle larger than π, called big [19]. Streinu [20] proved that PPTs
are Laman graphs. Moreover, Haas et al. [8] showed that every planar Laman graph can be
realized as a PPT.

The concept of pointed pseudotriangulations can be transferred to plane (abstract) graphs.
In fact, this was an intermediate step in the proof by Haas et al. A combinatorial pointed
pseudotriangulation (CPPT) is a plane graph (with 2n − 3 edges) with an assignment of
the labels “small”/“big” to the angles satisfying the properties of a PPT. Not every CPPT
can be stretched to a PPT, but every plane Laman graph admits a CPPT assignment and

(a) (b) (c)

Figure 1 A CPPT with big angles drawn marked by solid circles (a), the derived directed graph
~G (b), the stretched pointed pseudotriangulation (c).
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Figure 2 A CPPT that is not stretchable (a) and the derived directed graph ~G where the
highlighted vertices do not have 3 disjoint paths to the outer face (b).

each CPPT which is a Laman graph is stretchable. Haas et al. [8] provide an algorithm with
running time O(n3/2) that finds a CPPT assignment for a planar Laman graph.

In order to recognize plane Laman graphs it is sufficient to check whether a given
CPPT is stretchable. We provide such algorithms based on the following characterization of
stretchability by Haas et al. by means of connectivity.

I Lemma 1.1 ([8]). For a CPPT G a directed plane graph ~G, with V (~G) = V (G), can be
computed in linear time such that G is stretchable if and only if for each interior vertex u ∈ ~G

there are 3 vertex disjoint directed paths from u to distinct vertices on the boundary of ~G.

The condition of Lemma 1.1 seems to be an interesting property on its own, since it can be
understood as a form of “directed 3-connectivity”.

1.1 Our contribution

Consider a positive integer k, a directed graph G, and disjoint sets S, T ⊆ V (G). We call S
k-connected to T if for each vertex s ∈ S there are k directed paths from s to T pairwise
having only vertex s in common.

I Theorem 1.2. For each fixed k ≥ 1 there is an algorithm deciding for a directed planar
graph G and a partition V (G) = S ∪ T whether S is k-connected to T in O(n3/2) time.

We present the simple algorithm for Theorem 1.2 in Section 2. To check the Laman
property for a plane graph G we use the algorithms of Haas et al. [8] to find a CPPT
assignment and the directed plane graph ~G from Lemma 1.1, and then the algorithm from
Theorem 1.2 to decide whether the set of interior vertices of ~G is 3-connected to the set of
boundary vertices. This decides whether G is a plane Laman graph by Theorem 1.2 and
Lemma 1.1 and has running time O(n3/2).

A faster algorithm is obtained as follows. To search for a CPPT assignment we use
an algorithm of Borradaile et al. [3]. This algorithm computes a maximum flow between
multiple sources and sinks in O(n log3 n) time. To check the connectivity condition we first
use a construction similar to one of Kaplan and Nussbaum [11]. Then an algorithm due to
Ła̧cki et al. [13] is used that computes for a single source a maximum flow to each other
vertex in O(n log3 n) time. Details of this faster algorithm are presented in Section 3.

I Theorem 1.3. The recognition problem for planar Laman graphs can be solved in O(n log3 n).
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Checking the Laman condition for general graphs can be done in polynomial time. The
fastest (but very complicated) algorithm is due to Gabow and Westermann [6] (see also [4])
and needs O(n

√
n logn) time. Their algorithm is based on a characterization by means of

matroid sums. There is also a very easy pebble-game algorithm that runs in O(n2) time [15].
For planar graphs Haas et al. [8] give an algorithm that computes a PPT from a Laman graph
in time O(n3/2). Their algorithm can be turned into a recognition algorithm by checking
whether the derived realization is a PPT. If the original graph is not a Laman graph some
parts of the drawing collapse. Such a check however requires computations with exponentially
large numbers. So it depends on the model of computation if the overall algorithm runs in
O(n3/2) time. Our combinatorial algorithms avoid these subtleties.

2 Proof of Theorem 1.2

We first give some structural results. The following statement is similar to Menger’s theorem.

I Lemma 2.1. Let k ≥ 0, G be a directed (not necessarily planar) graph, and S, T ⊆ V (G)
be disjoint with |T | ≥ k. Then S is k-connected to T if and only if for each s ∈ S and
A ⊆ V (G) \ {s} with |A| = k − 1 there is a directed path from s to T not using the vertices
in A.

I Lemma 2.2. Let G be a directed graph and let S, T , T ′ ⊆ V (G) be disjoint. If S is
k-connected to T ∪ T ′ and T ′ is k-connected to T , then S is k-connected to T .

Proof. Let s ∈ S and fix a set A ⊆ V (G) \ {s} of size k− 1. There is a directed path from s

to some vertex u ∈ T ∪ T ′ not using vertices from A. If u ∈ T we are done. If u ∈ T ′, then
there is a directed path from u to T not using vertices from A. In each case there is a directed
path from s to T not using vertices from A. So S is k-connected to T by Lemma 2.1. J

For a single vertex we can decide in O(kn) time whether it is k-connected to T as follows.
A slight modification of a by now standard construction due to Ford and Fulkerson [5] gives
a directed graph G′ and vertices s′, t′ ∈ V (G′) such that s ∈ V (G) is k-connected to T in G
if and only if G′ admits an s′-t′-flow with value at least k. To check whether G′ admits such
a flow we use at most k steps of augmentation in Ford–Fulkerson’s algorithm. Since each
augmentation step needs only linear time we have the following result.

I Lemma 2.3. For each k ∈ N there is an algorithm deciding for any directed (not necessarily
planar) graph G, s ∈ V (G), and T ⊆ V (G) whether s is k-connected to T in linear time.

We call A ⊆ V (G) a separator if removing A splits G into two (not necessarily connected)
subgraphs G1 and G2, such that |V (G1)|, |V (G2)| ≤ 2

3 |V (G)|. For every planar graph G a
separator with size in O(

√
n) can be found in linear time [16].

Proof of Theorem 1.2. The algorithm works recursively as follows. Let A denote a separator
of G of size O(

√
n). Use Lemma 2.3 to check for each a ∈ A ∩ S whether a is k-connected to

T in G. Let G1 and G2 denote the two subgraphs of G separated by A (each including A).
For i = 1, 2 let Si = (S ∩ V (Gi)) \ A and let Ti = (T ∩ V (Gi)) ∪ A. Apply the algorithm
recursively to check whether Si is k-connected to Ti in Gi, for i = 1, 2.

The algorithm indeed checks whether S is k-connected to T in G since either it finds some
vertex in A ∩ S that is not k-connected to T in G, or it is sufficient to check whether S \A
is k-connected to A ∪ T by Lemma 2.2. Then it is sufficient to check G1 and G2 separately.

The separator can be found in linear time. Then the algorithm from Lemma 2.3 is called
O(
√
n) times for each vertex in the separator, each call with time in O(n). So the total time

for each step of the recursion and hence for the whole algorithm is O(n3/2). J
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Figure 3 The modification applied to a planar directed graph G′. The modification of Kaplan
and Nussbaum does not include the original vertices inside of the new cycles. We need this since all
the original vertices except a fixed source are targets in our algorithm.

3 Proof of Theorem 1.3

Here we describe how to use flow algorithms for planar graphs to check whether a plane
graph G admits a CPPT assignment and whether a CPPT is stretchable.

The vertex-face incidence graph of a plane graph G = (V,E) with face set F is a planar
bipartite graph H = (V ∪ F,E′) where (v, f) ∈ E′ if and only if v ∈ V is incident to f ∈ F
in G. A plane graph G admits a CPPT assignment if and only if its vertex-face incidence
graph has a subgraph H ′ where each interior face of G has degree 3 in H ′, the outer face of
G has degree 0 in H ′, and each vertex of G has degree in H ′ equal to its degree in G minus
1 [8]. This means that edges of H ′ correspond to small angles in the CPPT assignment. Via
some standard techniques we can use the algorithm of Borradaile et al. [3] (which computes
an integer flow) to find such an assignment in O(n log3 n) time if it exists.

To check whether a CPPT is stretchable using the algorithm of Ła̧cki et al. [13] for
maximum flow we need the following result similar to Lemma 1.1.

I Lemma 3.1. For each CPPT G a directed planar graph ~G with |V (~G)| ≤ 7|V (G)| can
be computed in linear time together with some s ∈ V (~G) and T ⊆ V (~G) such that G is
stretchable if and only if in ~G for each t ∈ T the value of a maximum s-t-flow is at least 3.

Having this lemma our algorithm to recognize planar Laman graphs works as described
in the introduction. It remains to prove Lemma 3.1. To this end we modify a construction of
Kaplan and Nussbaum [11]. Consider a directed graph G and distinct s, t ∈ V (G). Kaplan
and Nussbaum construct a directed planar graph Gs,t obtained from G by replacing each
u ∈ V (G) \ {s, t} by a cycle Cu with vertices u1, . . . , ud, where d is the degree of u in G,
such that arcs incident to u are replaced by arcs not sharing endpoints while keeping their
orientation and the cyclic order around u. The edges of the cycle Cu are oriented in both
directions and receive (flow) capacity 1/2. See Figure 3.

I Lemma 3.2 ([11]). There are k internally vertex disjoint s-t-paths in G if and only if in
Gs,t the maximum s-t-flow has value at least k.

Proof of Lemma 3.1. Consider a CPPT G. Let G′ denote a directed planar graph given
by Lemma 1.1, that is, G is stretchable if and only if in G′ the set of interior vertices is
3-connected to the set of boundary vertices. Let H denote the directed planar graph obtained
by reversing the direction of each arc in G′ and by adding a new vertex s in the outer face
of G′ connected by arcs sv to all boundary vertices v of G′. Then in G′ the set of interior
vertices T is 3-connected to the set of boundary vertices if and only if in H there are 3
internally vertex disjoint s-t-paths for each t ∈ T .
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We obtain a directed planar graph H ′ by splitting each vertex in V (H) \ {s} into a cycle
as follows. Replace each arc e in H, directed from u 6= s to v, by arcs ueve and vev, where
ue, ve are new vertices (and distinct for all e). Replace each arc e in H, directed from s to v,
by arcs sve, and vev, where ve is a new vertex. Further for each vertex u in H connect the
new vertices ue by a cycle Cu in the cyclic order of the arcs e around u, where the edges are
directed in both directions. Finally a (flow) capacity function is defined where all arcs on
cycles Cu receive capacity 1/2 and all other arcs capacity 1. See Figure 3.

This construction corresponds to the graph Hs,t constructed by Kaplan and Nussbaum,
except that there is not a specific target t and, additionally the original vertices from H

are kept inside of the cycles together with their incoming arcs. In particular H ′ is planar
and V (H) ⊆ V (H ′). Consider some t ∈ V (H). Note that each s-t-flow in H ′ does not use
vertices from V (H) \ {s, t}, since these vertices do not have outgoing arcs. Hence for each
t ∈ V (H) any s-t-flow in H ′ corresponds to an s-t-flow in HE (by contracting t and Ct to
a single vertex). By Lemma 3.2 there are 3 internally vertex disjoint s-t-paths in H if and
only if in H ′ the value of a maximum s-t-flow is at least 3.

Clearly ~G can be constructed in linear time and |V (~G)| ≤ |V (G)|+2|E(G)|+1 ≤ 7|V (G)|.
This shows that ~G = H ′ together with the set T satisfies the desired conditions. J

4 Conclusions and further directions

An obvious direction for future research is to search for faster or simpler algorithms recognizing
(planar) Laman graphs.

Our algorithms do not provide any certificate for their correctness. This could be a
Henneberg sequence [9] or a decomposition into two acyclic subgraphs [4]. We do not know
how to compute either of these faster than using the algorithm of Gabow and Westermann [6].

Finally, it remains to improve the running time for nonplanar graphs. Notice that our
approach heavily depends on planarity. However, it is of independent interest to see if the
connectivity results for directed graphs can be extended. We can adapt the ideas presented
in the first algorithm when the graph has a small separator. The running time becomes
linear for graphs with separators of constant size and stays in O(n3/2) as long as there are
separators of size O(

√
n). Similar variants of connectivity were studied before, for instance

the all-pairs reachability [7, 10], all pairs minimum cut [2], or the vertex disjoint path or
Menger problem [18]. We are not aware of other related results.

Instead of asking if a graph has a representation as a pointed pseudotriangulation one can
ask for other representations such as general pseudotriangulations [17, 19] or straight-line
triangle representations [1]. For the latter no polynomial time algorithm is known.
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