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—— Abstract

Let G = (V,E) be a graph with n vertices. A labeling of (the vertices of) G is an injective
function 7 : V — [n]. We say that 7 is a terrain-like labeling of G if for any four vertices a,b, ¢, d
such that w[a] < 7[b] < 7] < =[d], if both {a,c} and {b,d} are in E, then so is {a,d}. The
graph G is terrain-like if it has a terrain-like labeling. Similarly, 7 is a non-jumping labeling of G
(Ahmed et al., 2017) if for any four vertices a, b, ¢, d such that w[a] < w[b] < 7[c] < 7[d], if both
{a,c} and {b,d} are in E, then so is {b,c}. The graph G is non-jumping if it has a non-jumping
labeling (see Figure 1). In this paper we compare terrain-like graphs and non-jumping graphs,
answering on the way a question raised by Ahmed et al. concerning the latter family.

1 Introduction

The family of terrain-like graphs was introduced by Ashur et al. [2], extending a manuscript
of Katz [5]. Ashur et al. adapt the PTAS of Gibson et al. [4] for vertex guarding the vertices
of x-monotone terrains, to obtain a PTAS for minimum dominating set (MDS) in terrain-like
graphs. Then, by showing that the visibility graphs of weakly-visible polygons and terrains are
terrain-like, they immediately obtain similar PTASs for guarding such polygons and terrains.

Ahmed et al. [1] defined the family of non-jumping graphs and proved that it is equivalent
to the family of monotone L-graphs and thus admits a PTAS for MDS [3]. They showed that
several well-known graph families, such as outerplanar graphs, convex bipartite graphs, and
complete graphs, are subfamilies of non-jumping graphs and are therefore also monotone
L-graphs. They also gave an example of a (non-planar) graph which is jumping (i.e. not
non-jumping), providing a long and involved proof for it, and raised the question whether all
planar graphs are non-jumping (and thus can be realized as monotone L-graphs).

Denote by Fn s and Frp the families of non-jumping and terrain-like graphs, respectively.
The resemblance between the definitions of Fy; and Frr,, together with the fact that many
of the graph families that were found to be non-jumping in [1] (including those mentioned
above) are also terrain-like, raises the question what is the connection between them?

In this paper, we investigate the relation between these two graph families. First, we
present a natural infinite family of graphs that are in Fry but not in Fy s, and give a short
and simple proof for it. Moreover, the smallest member of this family is a planar graph,
implying that there exist planar graphs that cannot be realized as monotone L-graphs. Then,
we present some basic properties of the terrain-like labeling function, and use them to prove
that there exists an infinite family of graphs that are in Fy; but not in Fry. Finally, we
present a family of graphs which are not in Fprp U Fn .
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Figure 1 Left: The graph G. Center: A terrain-like (and jumping) labeling of G. Right: A
non-jumping (and not terrain-like) labeling of G.

2 -FTL VS. .FNJ
» Theorem 2.1. Fr; Z Fny

Proof. Let K,, = (V = {v1,va,...,0,}, E) be the complete graph on n vertices. For n > 6,
let K2 = (V,E \ {e1,e2,e3}), where ey, eq,e3 are any three pairwise-disjoint edges in E.
We show that for any n > 6, K,2 € Frp \ Fys. Assume w.lo.g. that e; = {vi,v2},
es = {vs,v4}, and e3 = {vs,v5}.

K, 3 € Frr: Consider the labeling m[v;] = 4. For any 4 vertices v;,, v;,, iy, v;, such that
i1 < iz < i3 < 14, we have {v; ,v;,} € E since i4 — 47 > 3; thus 7 is a terrain-like labeling.
K2 ¢ Fns: Assume by contradiction that K3 € Fx, then there exists a non-jumping
labeling 7 of K, 3. Assume w.l.o.g. that 7[v1] < 7[va]. We claim that either 7[v;] = 1 or
m[va] = n. Indeed, assume that 7[v;] = 1 for some ¢ # 1 and 7[v;] = n for some j # 2. Notice
that {v;,v2} and {v1,v;} are edges of the graph, but {v1,v2} is not an edge of the graph,
so 7 is not a non-jumping labeling w.r.t. v;, vy, v2,v; — a contradiction. By symmetry, the
above claim holds also for v3, v4 and for vs, vg, but then 7 is not an injective function. <«

As a corollary, we get that not all planar graphs are non-jumping, thus answering the
question raised by Ahmed et al. [1]. Indeed, it is easy to verify that K;* is planar (see
Figure 2).

U2

Figure 2 A planar embedding of K ®.

2.1 Some properties of labeling functions

» Observation 2.2. Let G = (V, E) be a graph and let H = (V' E") be an induced graph of G
(i.e., V! CV and E' = {{u,v} | u,v € V', {u,v} € E}). Let m: V — [|V|] be a terrain-like
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(resp., a non-jumping) labeling of G, and let ' : V' — [|[V'|] be a labeling of H such that
m'v;] < 7'[vj] if and only if wv;) < wlv;]. Then ' is a terrain-like (resp., a non-jumping)
labeling of H.

Denote by P, = (V, E) the path graph with n vertices, such that V = {v1,...,v,} and
E={{v,vi;1} |1 <i<n-—1}

» Lemma 2.3. Let 7 be a terrain-like labeling of P, such that w[v1] =1 and w[v,] = n, then
wlul =1 fori=1,...,n.

Proof. Let j be the largest index such that n[v;] =4 for ¢ = 1,...,5. If j = n then we
are done. Otherwise, j < n — 3 and 7[v;11] = k, for some j +1 < k < n. Let [ be the
largest index such that 7[v;] < 7[v] < w[vj11], then 7[v,41] < 7[v;41]. But now 7 is not a
terrain-like labeling w.r.t. v;, vy, vj41, V141, since {vj,le} ¢ E, so j must be n. |

Denote by C,, = (V, E) the cycle graph with n vertices, such that V = {v,va,...,0,}
and F = {{v;,vi11} | 1 <i<n—-1}U{{v1,v,}}.

» Lemma 2.4. Let w be a terrain-like (alternatively, a non-jumping) labeling of C,, such
that m[v1] = 1, then either w[v,] = n or w[vs] = n.

Proof. Assume that w[vs] < 7[v,]. If w[v,] = n then we are done. Otherwise, let j be the
smallest index such that 7[v,] < 7[v;], and notice that j > 3. But now 7 is neither a terrain-
like nor a non-jumping labeling w.r.t. vi,v;_1, vy, vj, since both {v1,v;} and {v;_1,v,} are
not in E. The case w[v,] < 7[ve] is symmetric. <

» Lemma 2.5. Let 7 be a terrain-like labeling of C,,. Assume w.l.o.g. that w[vi] =1 and
m[ve] < w[vy], then either:

1. 7lv1] < wve] < wlwz] < -+ < Wwp—1] < w[vy], or
2. wu1] < wop—1] < Top_g] < -+ < wva] < Ty

Proof. By Lemma 2.4, 7[v,] = n, and thus for any 1 < i < n we have w{v1] < 7[v;] < 7[vy].
First, we claim that if w[ve] < m[v;] for some 3 < i < n — 2, then 7[ve] < 7[v;y1]. Indeed,
if w[v1] < wvigp1] < wlve] < 7w[v;] then we have {v1,va}, {vi,vi41} € E but {v1,v;} ¢ E.
Symmetrically, if w[v,_1] < 7[v;] for some 2 < i < n — 3, then w[v,_1] < T[Vit1].

Secondly, we claim that if 7[v;] < w[vs] for some 3 < i < n — 2, then 7[v;41] <
w[ve]. Indeed, if w[v1] < 7[v;] < 7w[ve] < w[viy1] then we have {v1,va}, {vi,viz1} € E but
{v1,vit} ¢ E.

Therefore we can only have the following two cases:

1. If w[vs] < wluz] < m[vy], then by the first claim we have 7wlvy] < w[v;] < 7lv,] for
j=3,...,n—1. By Lemma 2.3 on the induced path vy, vs,...,v, we get that w[v] <
mvg] < wuz] < -+ < wop—1] < Ty

2. If w[v1] < 7lvs] < w[ve], then by the second claim we have m[vi] < 7[v;] < m[vs] for
Jj=3,...,n—1, and, since w[v,_1] < 7[2], by the first claim we have 7[v,_1] < 7[v;] for
j=2,...,n—2. Again by Lemma 2.3 on the induced path v,_1,...,vs3,v2 we get that
1] < wvp—1] < Tlop_2] < -+ < wva] < Wy

<

» Theorem 2.6. Fn; € Fryr
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Figure 3 Left: The graph G. Right: A non-jumping labeling of G, i.e. w[vg] = 1,7[v2] =
2,wlv] =3, wur] =4, ..., w[un] =n+ 3, 7[va] =n+4,w[vs] =n+5,7wvs] =n+6.

Proof. Let Cgs be the cycle graph with vertex set V = {vy,vs,...,06}, and P, the path
graph with vertex set U = {uj,ug,...,u,}, n > 2. Consider the graph G = (V UU, E),
where E = E(Cs) U E(P,) U {{v1,u1}, {vs,un}}. In other words, G contains an induced
cycle on 6 vertices v1,va,...,vs, and an induced path on n 4 2 vertices vy, u1, Ug, ..., Uy, Vy;
see Figure 3 (left).

GeFny

Figure 3 (right) shows a non-jumping labeling of G, so G is in Fy ;.

G ¢ Frr

Assume by contradiction that G is in Frp, then there exists a terrain-like labeling 7 :
VUU — [n+6]. Let my : V — [6] be a labeling such that mv[v;] < my[v;] if and only
if mlv;] < w[v;]. Since C is an induced cycle, Lemmas 2.4 and 2.5 can be applied to 7y .
By Lemma 2.4, there must be an edge between the first and last vertex in the labeling 7y .
Formally, if my[v;] =1 and my[v;] = 6, then {v;,v;} € E. There are 6 edges in Cg, so there
are 6 possible choices of e = {v;,v;}, but we observe that the graph is symmetric for all
the edges in {{v1,vs}, {v1,v2}, {va, v5}, {vs,v3}}, and for all the edges in {{vs, v}, {v2, v3}}.
Thus, w.l.o.g. we only consider the following two cases: either e = {v1, v} or e = {vs, vg}.
By Lemma 2.5 we have four cases for the labeling of V:

1. 7[n] < wlwe] < wlws] < vy < wws] < w[we)
2. w[v1] < wlus] < 7] < wlwz] < W] < Tve]
3. wue] < wv1] < Twe] < W] < wvg] < wlws]
4. 7(-[7)6} < ’/T[’U4] < 7'('[’03} < ’/T[’UQ] < 7'('[’01} < ’/T[’U5]

Cases 1 and 3: It is not hard to verify that either w[vs] < 7[u,] < 7[v4], or w[vyg] <
7[un] < w[vs]. Thus either m[vg] < wlu;] < wlvg] for all 1 < i < n, or w[vy] < wlw;] < wlws)
for all 1 < i < n. If wlvs] < w[u1] < m[vy], then the labeling w[v1] < wlvs] < 7[u1] < w[wva]

contradicts the terrain-like property, and if 7[v4] < w[u1] < 7[vs], then the labeling m[v1] <
m[vg] < w[uy] < w[vs] is a contradiction.

Case 2: Again, we have either 7[vy] < 7[u;] < wlvs] for all 1 <i < n, or wlvs] < wlu,| <
mlvg] for all 1 < i < n. If wlog] < 7[ug] < w[vg], then the labeling 7[v1] < 7[vg] < 7[uy] <
m[vs] contradicts the terrain-like property, and if m[vs] < 7[u1] < 7[v4], then the labeling
w[v1] < wlvs] < wlug] < 7wy is a contradiction.

Case 4: Notice that either 7[vg] < 7[u,] < 7[va], or 7[vs] < wlu,] < 7[vs]. Thus either
mlve] < 7u;] < woy] for all 1 < i < n, or wug] < w[w;] < wlws] for all 1 <4 < n. If
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m[vg] < wu1] < w[vg], then the labeling wlu;] < 7[vs] < 7[v1] < 7[vs] contradicts the terrain-
like property, and if w[vs] < w[u1] < w[vs], then the labeling w[vy] < 7[u1] < wlvg] < wv1] is
a contradiction. <

Finally, does every graph belong either to Fry or to Fys? The answer is clearly no,
since, in general, minimum dominating set is NP-hard to approximate within a factor of
Q(logn) [6]. Nevertheless, it would be nice to see a concrete and simple example. Below, we
present an infinite family of graphs which are neither in Fpp nor in Fy .

The Harary graphs H, j; are k-connected graphs on n vertices, having the smallest
possible number of edges. When n is even and k is odd, H,, ; is defined as follows: H,, , =
(V = {vo, ..., vn—1}, E1 U E3), where E; = {{v;,viy;}]1 < j < LgJ,O <i<n-—1} and
By = {{vi,vi12 }|0 <i < § — 1} (where the addition is modulo n), see Figure 4.

Vo Vo

Vg ) Vg V2

Figure 4 Hg 3 (left) and Hs 5 (right).

» Theorem 2.7. For any m > 4, Ha,, 3 is neither in Frr, nor in Fn .

Since we are interested in a simple example, we prove the theorem here only for Hg 3.

Proof. (For m = 4) Assume by contradiction that 7 is a non-jumping labeling of Hg 3, and
assume w.l.o.g. that 7[vg] = 1. Since C; = (vo, v1,v2,vs3,v4) and Co = (vp, v4, V5, Ve, U7) are
induced cycles, we can apply Lemma 2.4, and get 3 cases: (i) w[vy4] = 8, (ii) 7[v1] = 8, or (iii)
m[v7] = 8. Notice that (ii) and (iii) are symmetric cases, so we consider only cases (i) and
(ii). We denote the labeling of Cy by 71 and the labeling of Cy by .

(i) Assume w.l.o.g. that wvg] < 7w[v1] < 7w[v7] < w[vy], then for any possible label-
ing of vs we get that 7 is not a non-jumping labeling: if w[v;] < w[vs] then we
have {vg,vr},{v1,v5} € E but {v1,v7} ¢ E, and if w[vs] < w[v7] then we have
{vo,v7}, {va,v5} € E but {vs,v7} ¢ E.

(ii) Notice that m[vg] < 7[va] < 7w[v4] < 7[v1] is not possible, so assume 7w[vg] < w[vy] <
w[ve] < m[v1]. We notice that either ma[vs] = 5 or mefvr] = 5. If mavs] = 5 then
since ma[vg] < b we get that w[vg] < w[va], but then we have {vo,v4}, {ve,v2} € E but
{vg,v6} ¢ E. If mavy] = 5, then since mafus] < 5 we get that w[vs] < w[v7], but then
we have {vg,v7}, {vs,v1} € E but {vs,v7} ¢ E.

Now assume by contradiction that 7 is a terrain-like labeling of Hg 3, and assume w.l.o.g.
that w[vg] = 1. Again by applying Lemma 2.4 we have four cases: (i) 1 = w[vg] < 7[v1] <
m[ve] < wlug] < wva] =8, (ii) 1 = 7wlwe] < wvs] < wwe] < w1] < wwg] =8, (iii) 1 = 7wlwe] <
mlvg) < wluz] < wwe] < ww1] =8, (iv) 1 = 7wlvg] < 7] < wvs] < w[vg] < w[v1] = 8.

(i) We first get that w[vg] < w[us] < 7[v1] since any other labeling results in a contradiction,

and then any labeling of vg given 1 = 7[vg] < wlvs] < w[v1] < wlve] < wvs] < w[vg] = 8
is impossible.

EuroCG’'19
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(i)

(iii)
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There are 2 possibilities for labeling vs: either 7[vg] < 7lvs] < w[vs] or wv1] < 7[vs] <
m[va). If mlvg] < wlvs] < w[vg] then we have m[ve] < mwlvg] < 7[v1] and no possible
labeling for v7. If wv1] < w[vs] < w[v4] then there is no possible labeling for vg.
We first get that w[vg] < 7[vs] < 7[v4] since any other labeling results in a contradiction,
and then any labeling of vg given 1 = w[vg] < wlvs] < 7[v4] < w[vg] < 7[wa] < 7w[v1] = 8
is impossible.
There are 2 possibilities for labeling vs: either m[vg] < mw[vs] < wlva] or 7[vy] < 7[vs] <
wlvi]. I w[vg] < wlvs] < wlvs] then we have w[vs] < m[vg] < w[vz] and no possible
labeling for v7. If w[vg] < wlus] < w[v1] then there is no possible labeling for vg.

<
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