Terrain-Like and Non-Jumping Graphs^{*}

Stav Ashur¹, Omrit Filtser², and Rachel Sababn³

- 1 Department of Computer Science, Ben-Gurion University of the Negev stavshe@post.bgu.ac.il
- 2 Department of Computer Science, Ben-Gurion University of the Negev omritna@post.bgu.ac.il
- 3 Department of Computer Science, Ben-Gurion University of the Negev rachelfr@post.bgu.ac.il

— Abstract -

Let G = (V, E) be a graph with *n* vertices. A labeling of (the vertices of) *G* is an injective function $\pi : V \to [n]$. We say that π is a *terrain-like labeling* of *G* if for any four vertices a, b, c, dsuch that $\pi[a] < \pi[b] < \pi[c] < \pi[d]$, if both $\{a, c\}$ and $\{b, d\}$ are in *E*, then so is $\{a, d\}$. The graph *G* is *terrain-like* if it has a terrain-like labeling. Similarly, π is a *non-jumping labeling* of *G* (Ahmed et al., 2017) if for any four vertices a, b, c, d such that $\pi[a] < \pi[b] < \pi[c] < \pi[d]$, if both $\{a, c\}$ and $\{b, d\}$ are in *E*, then so is $\{b, c\}$. The graph *G* is *non-jumping* if it has a non-jumping labeling (see Figure 1). In this paper we compare terrain-like graphs and non-jumping graphs, answering on the way a question raised by Ahmed et al. concerning the latter family.

1 Introduction

The family of terrain-like graphs was introduced by Ashur et al. [2], extending a manuscript of Katz [5]. Ashur et al. adapt the PTAS of Gibson et al. [4] for vertex guarding the vertices of x-monotone terrains, to obtain a PTAS for minimum dominating set (MDS) in terrain-like graphs. Then, by showing that the visibility graphs of weakly-visible polygons and terrains are terrain-like, they immediately obtain similar PTASs for guarding such polygons and terrains.

Ahmed et al. [1] defined the family of non-jumping graphs and proved that it is equivalent to the family of *monotone L-graphs* and thus admits a PTAS for MDS [3]. They showed that several well-known graph families, such as outerplanar graphs, convex bipartite graphs, and complete graphs, are subfamilies of non-jumping graphs and are therefore also monotone L-graphs. They also gave an example of a (non-planar) graph which is jumping (i.e. not non-jumping), providing a long and involved proof for it, and raised the question whether all planar graphs are non-jumping (and thus can be realized as monotone L-graphs).

Denote by \mathcal{F}_{NJ} and \mathcal{F}_{TL} the families of non-jumping and terrain-like graphs, respectively. The resemblance between the definitions of \mathcal{F}_{NJ} and \mathcal{F}_{TL} , together with the fact that many of the graph families that were found to be non-jumping in [1] (including those mentioned above) are also terrain-like, raises the question what is the connection between them?

In this paper, we investigate the relation between these two graph families. First, we present a natural infinite family of graphs that are in \mathcal{F}_{TL} but not in \mathcal{F}_{NJ} , and give a short and simple proof for it. Moreover, the smallest member of this family is a planar graph, implying that there exist planar graphs that cannot be realized as monotone L-graphs. Then, we present some basic properties of the terrain-like labeling function, and use them to prove that there exists an infinite family of graphs that are in \mathcal{F}_{NJ} but not in \mathcal{F}_{TL} . Finally, we present a family of graphs which are not in $\mathcal{F}_{TL} \cup \mathcal{F}_{NJ}$.

^{*} Work by the authors was partially supported by the Lynn and William Frankel Center for Computer Sciences.

³⁵th European Workshop on Computational Geometry, Utrecht, The Netherlands, March 19-20, 2019.

This is an extended abstract of a presentation given at EuroCG'19. It has been made public for the benefit of the community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

Figure 1 Left: The graph G. Center: A terrain-like (and jumping) labeling of G. Right: A non-jumping (and not terrain-like) labeling of G.

2 \mathcal{F}_{TL} vs. \mathcal{F}_{NJ}

▶ Theorem 2.1. $\mathcal{F}_{TL} \not\subseteq \mathcal{F}_{NJ}$

Proof. Let $K_n = (V = \{v_1, v_2, \ldots, v_n\}, E)$ be the complete graph on n vertices. For $n \ge 6$, let $K_n^{-3} = (V, E \setminus \{e_1, e_2, e_3\})$, where e_1, e_2, e_3 are any three pairwise-disjoint edges in E. We show that for any $n \ge 6$, $K_n^{-3} \in \mathcal{F}_{TL} \setminus \mathcal{F}_{NJ}$. Assume w.l.o.g. that $e_1 = \{v_1, v_2\}, e_2 = \{v_3, v_4\}, \text{ and } e_3 = \{v_5, v_6\}.$

 $\begin{array}{l} \underline{K_n^{-3}} \in \mathcal{F}_{TL}: \mbox{ Consider the labeling } \pi[v_i] = i. \mbox{ For any 4 vertices } v_{i_1}, v_{i_2}, v_{i_3}, v_{i_4} \mbox{ such that } i_1 < i_2 < i_3 < i_4, \mbox{ we have } \{v_{i_1}, v_{i_4}\} \in E \mbox{ since } i_4 - i_1 \geq 3; \mbox{ thus } \pi \mbox{ is a terrain-like labeling.} \\ \underline{K_n^{-3}} \notin \mathcal{F}_{NJ}: \mbox{ Assume by contradiction that } K_n^{-3} \in \mathcal{F}_{NJ}, \mbox{ then there exists a non-jumping labeling } \pi \mbox{ of } K_n^{-3}. \mbox{ Assume w.l.o.g. that } \pi[v_1] < \pi[v_2]. \mbox{ We claim that either } \pi[v_1] = 1 \mbox{ or } \pi[v_2] = n. \mbox{ Indeed, assume that } \pi[v_i] = 1 \mbox{ for some } i \neq 1 \mbox{ and } \pi[v_j] = n \mbox{ for some } j \neq 2. \mbox{ Notice that } \{v_i, v_2\} \mbox{ and } \{v_1, v_j\} \mbox{ are edges of the graph, but } \{v_1, v_2\} \mbox{ is not an edge of the graph, so } \pi \mbox{ is not a non-jumping labeling w.r.t. } v_i, v_1, v_2, v_j \mbox{ a contradiction.} \mbox{ By symmetry, the above claim holds also for } v_3, v_4 \mbox{ and for } v_5, v_6, \mbox{ but then } \pi \mbox{ is not an injective function.} \end{tabular}$

As a corollary, we get that not all planar graphs are non-jumping, thus answering the question raised by Ahmed et al. [1]. Indeed, it is easy to verify that K_6^{-3} is planar (see Figure 2).

Figure 2 A planar embedding of K_6^{-3} .

2.1 Some properties of labeling functions

▶ **Observation 2.2.** Let G = (V, E) be a graph and let H = (V', E') be an induced graph of G (*i.e.*, $V' \subseteq V$ and $E' = \{\{u, v\} \mid u, v \in V', \{u, v\} \in E\}$). Let $\pi : V \to [|V|]$ be a terrain-like

S. Ashur, O. Filtser and R. Saban

(resp., a non-jumping) labeling of G, and let $\pi' : V' \to [|V'|]$ be a labeling of H such that $\pi'[v_i] < \pi'[v_j]$ if and only if $\pi[v_i] < \pi[v_j]$. Then π' is a terrain-like (resp., a non-jumping) labeling of H.

Denote by $P_n = (V, E)$ the path graph with n vertices, such that $V = \{v_1, \ldots, v_n\}$ and $E = \{\{v_i, v_{i+1}\} \mid 1 \le i \le n-1\}.$

▶ Lemma 2.3. Let π be a terrain-like labeling of P_n such that $\pi[v_1] = 1$ and $\pi[v_n] = n$, then $\pi[v_i] = i$ for i = 1, ..., n.

Proof. Let j be the largest index such that $\pi[v_i] = i$ for $i = 1, \ldots, j$. If j = n then we are done. Otherwise, $j \leq n-3$ and $\pi[v_{j+1}] = k$, for some j+1 < k < n. Let l be the largest index such that $\pi[v_j] < \pi[v_l] < \pi[v_{j+1}]$, then $\pi[v_{j+1}] < \pi[v_{l+1}]$. But now π is not a terrain-like labeling w.r.t. $v_j, v_l, v_{j+1}, v_{l+1}$, since $\{v_j, v_{l+1}\} \notin E$, so j must be n.

Denote by $C_n = (V, E)$ the cycle graph with *n* vertices, such that $V = \{v_1, v_2, ..., v_n\}$ and $E = \{\{v_i, v_{i+1}\} \mid 1 \le i \le n-1\} \cup \{\{v_1, v_n\}\}.$

▶ Lemma 2.4. Let π be a terrain-like (alternatively, a non-jumping) labeling of C_n such that $\pi[v_1] = 1$, then either $\pi[v_n] = n$ or $\pi[v_2] = n$.

Proof. Assume that $\pi[v_2] < \pi[v_n]$. If $\pi[v_n] = n$ then we are done. Otherwise, let j be the smallest index such that $\pi[v_n] < \pi[v_j]$, and notice that $j \ge 3$. But now π is neither a terrain-like nor a non-jumping labeling w.r.t. v_1, v_{j-1}, v_n, v_j , since both $\{v_1, v_j\}$ and $\{v_{j-1}, v_n\}$ are not in E. The case $\pi[v_n] < \pi[v_2]$ is symmetric.

▶ Lemma 2.5. Let π be a terrain-like labeling of C_n . Assume w.l.o.g. that $\pi[v_1] = 1$ and $\pi[v_2] < \pi[v_n]$, then either:

1. $\pi[v_1] < \pi[v_2] < \pi[v_3] < \cdots < \pi[v_{n-1}] < \pi[v_n]$, or **2.** $\pi[v_1] < \pi[v_{n-1}] < \pi[v_{n-2}] < \cdots < \pi[v_2] < \pi[v_n]$.

Proof. By Lemma 2.4, $\pi[v_n] = n$, and thus for any 1 < i < n we have $\pi[v_1] < \pi[v_i] < \pi[v_n]$. First, we claim that if $\pi[v_2] < \pi[v_i]$ for some $3 \le i \le n-2$, then $\pi[v_2] < \pi[v_{i+1}]$. Indeed, if $\pi[v_1] < \pi[v_{i+1}] < \pi[v_2] < \pi[v_i]$ then we have $\{v_1, v_2\}, \{v_i, v_{i+1}\} \in E$ but $\{v_1, v_i\} \notin E$. Symmetrically, if $\pi[v_{n-1}] < \pi[v_i]$ for some $2 \le i \le n-3$, then $\pi[v_{n-1}] < \pi[v_{i+1}]$.

Secondly, we claim that if $\pi[v_i] < \pi[v_2]$ for some $3 \le i \le n-2$, then $\pi[v_{i+1}] < \pi[v_2]$. Indeed, if $\pi[v_1] < \pi[v_i] < \pi[v_2] < \pi[v_{i+1}]$ then we have $\{v_1, v_2\}, \{v_i, v_{i+1}\} \in E$ but $\{v_1, v_{i+1}\} \notin E$.

Therefore we can only have the following two cases:

- 1. If $\pi[v_2] < \pi[v_3] < \pi[v_n]$, then by the first claim we have $\pi[v_2] < \pi[v_j] < \pi[v_n]$ for j = 3, ..., n 1. By Lemma 2.3 on the induced path $v_2, v_3, ..., v_n$ we get that $\pi[v_1] < \pi[v_2] < \pi[v_3] < \cdots < \pi[v_{n-1}] < \pi[v_n]$.
- 2. If $\pi[v_1] < \pi[v_3] < \pi[v_2]$, then by the second claim we have $\pi[v_1] < \pi[v_j] < \pi[v_2]$ for $j = 3, \ldots, n-1$, and, since $\pi[v_{n-1}] < \pi[2]$, by the first claim we have $\pi[v_{n-1}] < \pi[v_j]$ for $j = 2, \ldots, n-2$. Again by Lemma 2.3 on the induced path $v_{n-1}, \ldots, v_3, v_2$ we get that $\pi[v_1] < \pi[v_{n-1}] < \pi[v_{n-2}] < \cdots < \pi[v_2] < \pi[v_n]$.

▶ Theorem 2.6. $\mathcal{F}_{NJ} \not\subseteq \mathcal{F}_{TL}$

Figure 3 Left: The graph G. Right: A non-jumping labeling of G, i.e. $\pi[v_6] = 1, \pi[v_2] = 2, \pi[v_1] = 3, \pi[u_1] = 4, \dots, \pi[u_n] = n + 3, \pi[v_4] = n + 4, \pi[v_3] = n + 5, \pi[v_5] = n + 6.$

Proof. Let C_6 be the cycle graph with vertex set $V = \{v_1, v_2, \ldots, v_6\}$, and P_n the path graph with vertex set $U = \{u_1, u_2, \ldots, u_n\}$, $n \ge 2$. Consider the graph $G = (V \cup U, E)$, where $E = E(C_6) \cup E(P_n) \cup \{\{v_1, u_1\}, \{v_4, u_n\}\}$. In other words, G contains an induced cycle on 6 vertices v_1, v_2, \ldots, v_6 , and an induced path on n + 2 vertices $v_1, u_1, u_2, \ldots, u_n, v_4$; see Figure 3 (left).

 $G \in \mathcal{F}_{NJ}$

Figure 3 (right) shows a non-jumping labeling of G, so G is in \mathcal{F}_{NJ} .

 $G \notin \mathcal{F}_{TL}$

Assume by contradiction that G is in \mathcal{F}_{TL} , then there exists a terrain-like labeling π : $V \cup U \to [n+6]$. Let $\pi_V : V \to [6]$ be a labeling such that $\pi_V[v_i] < \pi_V[v_j]$ if and only if $\pi[v_i] < \pi[v_j]$. Since C_6 is an induced cycle, Lemmas 2.4 and 2.5 can be applied to π_V . By Lemma 2.4, there must be an edge between the first and last vertex in the labeling π_V . Formally, if $\pi_V[v_i] = 1$ and $\pi_V[v_j] = 6$, then $\{v_i, v_j\} \in E$. There are 6 edges in C_6 , so there are 6 possible choices of $e = \{v_i, v_j\}$, but we observe that the graph is symmetric for all the edges in $\{\{v_1, v_6\}, \{v_1, v_2\}, \{v_4, v_5\}, \{v_4, v_3\}\}$, and for all the edges in $\{\{v_5, v_6\}, \{v_2, v_3\}\}$. Thus, w.l.o.g. we only consider the following two cases: either $e = \{v_1, v_6\}$ or $e = \{v_5, v_6\}$. By Lemma 2.5 we have four cases for the labeling of V:

1. $\pi[v_1] < \pi[v_2] < \pi[v_3] < \pi[v_4] < \pi[v_5] < \pi[v_6]$ 2. $\pi[v_1] < \pi[v_5] < \pi[v_4] < \pi[v_3] < \pi[v_2] < \pi[v_6]$ 3. $\pi[v_6] < \pi[v_1] < \pi[v_2] < \pi[v_3] < \pi[v_4] < \pi[v_5]$ 4. $\pi[v_6] < \pi[v_4] < \pi[v_3] < \pi[v_2] < \pi[v_1] < \pi[v_5]$

Cases 1 and 3: It is not hard to verify that either $\pi[v_3] < \pi[u_n] < \pi[v_4]$, or $\pi[v_4] < \pi[u_n] < \pi[v_5]$. Thus either $\pi[v_3] < \pi[u_i] < \pi[v_4]$ for all $1 \le i \le n$, or $\pi[v_4] < \pi[u_i] < \pi[v_5]$ for all $1 \le i \le n$. If $\pi[v_3] < \pi[u_1] < \pi[v_4]$, then the labeling $\pi[v_1] < \pi[v_3] < \pi[u_1] < \pi[v_4]$ contradicts the terrain-like property, and if $\pi[v_4] < \pi[u_1] < \pi[v_5]$, then the labeling $\pi[v_1] < \pi[v_1] < \pi[v_1] < \pi[v_1] < \pi[v_4] < \pi[v_4] < \pi[u_4] < \pi[u_4$

Case 2: Again, we have either $\pi[v_4] < \pi[u_i] < \pi[v_3]$ for all $1 \le i \le n$, or $\pi[v_5] < \pi[u_i] < \pi[v_4]$ for all $1 \le i \le n$. If $\pi[v_4] < \pi[u_1] < \pi[v_3]$, then the labeling $\pi[v_1] < \pi[v_4] < \pi[u_1] < \pi[v_3]$ contradicts the terrain-like property, and if $\pi[v_5] < \pi[u_1] < \pi[v_4]$, then the labeling $\pi[v_1] < \pi[v_3] < \pi[v_1] < \pi[v_4] < \pi[u_1]$ is a contradiction.

Case 4: Notice that either $\pi[v_6] < \pi[u_n] < \pi[v_4]$, or $\pi[v_4] < \pi[u_n] < \pi[v_3]$. Thus either $\pi[v_6] < \pi[u_i] < \pi[v_4]$ for all $1 \le i \le n$, or $\pi[v_4] < \pi[u_i] < \pi[v_3]$ for all $1 \le i \le n$. If

S. Ashur, O. Filtser and R. Saban

 $\pi[v_6] < \pi[u_1] < \pi[v_4]$, then the labeling $\pi[u_1] < \pi[v_4] < \pi[v_1] < \pi[v_5]$ contradicts the terrainlike property, and if $\pi[v_4] < \pi[u_1] < \pi[v_3]$, then the labeling $\pi[v_4] < \pi[u_1] < \pi[v_3] < \pi[v_1]$ is a contradiction.

Finally, does every graph belong either to \mathcal{F}_{TL} or to \mathcal{F}_{NJ} ? The answer is clearly no, since, in general, minimum dominating set is NP-hard to approximate within a factor of $\Omega(\log n)$ [6]. Nevertheless, it would be nice to see a concrete and simple example. Below, we present an infinite family of graphs which are neither in \mathcal{F}_{TL} nor in \mathcal{F}_{NJ} .

The Harary graphs $H_{n,k}$ are k-connected graphs on n vertices, having the smallest possible number of edges. When n is even and k is odd, $H_{n,k}$ is defined as follows: $H_{n,k} = (V = \{v_0, ..., v_{n-1}\}, E_1 \cup E_2)$, where $E_1 = \{\{v_i, v_{i+j}\} | 1 \leq j \leq \lfloor \frac{k}{2} \rfloor, 0 \leq i \leq n-1\}$ and $E_2 = \{\{v_i, v_{i+\frac{n}{2}}\} | 0 \leq i \leq \frac{n}{2} - 1\}$ (where the addition is modulo n), see Figure 4.

Figure 4 $H_{8,3}$ (left) and $H_{8,5}$ (right).

▶ Theorem 2.7. For any $m \ge 4$, $H_{2m,3}$ is neither in \mathcal{F}_{TL} nor in \mathcal{F}_{NJ} .

Since we are interested in a simple example, we prove the theorem here only for $H_{8,3}$.

Proof. (For m = 4) Assume by contradiction that π is a non-jumping labeling of $H_{8,3}$, and assume w.l.o.g. that $\pi[v_0] = 1$. Since $C_1 = (v_0, v_1, v_2, v_3, v_4)$ and $C_2 = (v_0, v_4, v_5, v_6, v_7)$ are induced cycles, we can apply Lemma 2.4, and get 3 cases: (i) $\pi[v_4] = 8$, (ii) $\pi[v_1] = 8$, or (iii) $\pi[v_7] = 8$. Notice that (ii) and (iii) are symmetric cases, so we consider only cases (i) and (ii). We denote the labeling of C_1 by π_1 and the labeling of C_2 by π_2 .

- (i) Assume w.l.o.g. that $\pi[v_0] < \pi[v_1] < \pi[v_7] < \pi[v_4]$, then for any possible labeling of v_5 we get that π is not a non-jumping labeling: if $\pi[v_7] < \pi[v_5]$ then we have $\{v_0, v_7\}, \{v_1, v_5\} \in E$ but $\{v_1, v_7\} \notin E$, and if $\pi[v_5] < \pi[v_7]$ then we have $\{v_0, v_7\}, \{v_4, v_5\} \in E$ but $\{v_5, v_7\} \notin E$.
- (ii) Notice that $\pi[v_0] < \pi[v_2] < \pi[v_4] < \pi[v_1]$ is not possible, so assume $\pi[v_0] < \pi[v_4] < \pi[v_2] < \pi[v_1]$. We notice that either $\pi_2[v_4] = 5$ or $\pi_2[v_7] = 5$. If $\pi_2[v_4] = 5$ then since $\pi_2[v_6] < 5$ we get that $\pi[v_6] < \pi[v_4]$, but then we have $\{v_0, v_4\}, \{v_6, v_2\} \in E$ but $\{v_4, v_6\} \notin E$. If $\pi_2[v_7] = 5$, then since $\pi_2[v_5] < 5$ we get that $\pi[v_5] < \pi[v_7]$, but then we have $\{v_0, v_7\}, \{v_5, v_1\} \in E$ but $\{v_5, v_7\} \notin E$.

Now assume by contradiction that π is a terrain-like labeling of $H_{8,3}$, and assume w.l.o.g. that $\pi[v_0] = 1$. Again by applying Lemma 2.4 we have four cases: (i) $1 = \pi[v_0] < \pi[v_1] < \pi[v_2] < \pi[v_3] < \pi[v_4] = 8$, (ii) $1 = \pi[v_0] < \pi[v_3] < \pi[v_2] < \pi[v_1] < \pi[v_4] = 8$, (iii) $1 = \pi[v_0] < \pi[v_3] < \pi[v_2] < \pi[v_1] < \pi[v_4] = 8$, (iii) $1 = \pi[v_0] < \pi[v_3] < \pi[v_2] < \pi[v_4] = 8$, (iii) $1 = \pi[v_0] < \pi[v_3] < \pi[v_4] = 8$, (iv) $1 = \pi[v_0] < \pi[v_2] < \pi[v_3] < \pi[v_4] < \pi[v_1] = 8$.

(i) We first get that $\pi[v_0] < \pi[v_5] < \pi[v_1]$ since any other labeling results in a contradiction, and then any labeling of v_6 given $1 = \pi[v_0] < \pi[v_5] < \pi[v_1] < \pi[v_2] < \pi[v_3] < \pi[v_4] = 8$ is impossible.

51:6 A Contribution to EuroCG 2019

- (ii) There are 2 possibilities for labeling v_5 : either $\pi[v_0] < \pi[v_5] < \pi[v_3]$ or $\pi[v_1] < \pi[v_5] < \pi[v_4]$. If $\pi[v_0] < \pi[v_5] < \pi[v_3]$ then we have $\pi[v_2] < \pi[v_6] < \pi[v_1]$ and no possible labeling for v_7 . If $\pi[v_1] < \pi[v_5] < \pi[v_4]$ then there is no possible labeling for v_6 .
- (iii) We first get that $\pi[v_0] < \pi[v_5] < \pi[v_4]$ since any other labeling results in a contradiction, and then any labeling of v_6 given $1 = \pi[v_0] < \pi[v_5] < \pi[v_4] < \pi[v_3] < \pi[v_2] < \pi[v_1] = 8$ is impossible.
- (iv) There are 2 possibilities for labeling v_5 : either $\pi[v_0] < \pi[v_5] < \pi[v_2]$ or $\pi[v_4] < \pi[v_5] < \pi[v_1]$. If $\pi[v_0] < \pi[v_5] < \pi[v_2]$ then we have $\pi[v_5] < \pi[v_6] < \pi[v_2]$ and no possible labeling for v_7 . If $\pi[v_4] < \pi[v_5] < \pi[v_1]$ then there is no possible labeling for v_6 .

— References

- 1 Abu Reyan Ahmed, Felice De Luca, Sabin Devkota, Alon Efrat, Md Iqbal Hossain, Stephen Kobourov, Jixian Li, Sammi Abida Salma, and Eric Welch. L-graphs and monotone L-graphs. *arXiv:1703.01544*, 2017.
- 2 Stav Ashur, Omrit Filtser, Matthew J. Katz, and Rachel Saban. Terrain-like graphs: PTASs for guarding weakly-visible polygons and terrains. Manuscript, 2018.
- 3 Sayan Bandyapadhyay, Anil Maheshwari, Saeed Mehrabi, and Subhash Suri. Approximating dominating set on intersection graphs of rectangles and l-frames. In 43rd International Symposium on Mathematical Foundations of Computer Science, MFCS 2018, August 27-31, 2018, Liverpool, UK, pages 37:1-37:15, 2018. URL: https://doi.org/10.4230/LIPIcs.MFCS.2018.37, doi:10.4230/LIPIcs.MFCS.2018.37.
- 4 Matt Gibson, Gaurav Kanade, Erik Krohn, and Kasturi Varadarajan. Guarding terrains via local search. *Journal of Computational Geometry*, 5(1):168–178, 2014.
- 5 Matthew J. Katz. A PTAS for vertex guarding weakly-visible polygons an extended abstract. arXiv:1803.02160, 2018.
- 6 Ran Raz and Shmuel Safra. A sub-constant error-probability low-degree test, and a sub-constant error-probability PCP characterization of NP. In Proceedings of the Twenty-Ninth Annual ACM Symposium on the Theory of Computing, El Paso, Texas, USA, May 4-6, 1997, pages 475-484, 1997. URL: https://doi.org/10.1145/258533.258641, doi: 10.1145/258533.258641.