
Approximating the Sweepwidth of Polygons with
Holes
Dorian Rudolph1

1 Paderborn University
dorian@mail.upb.de

Abstract
Consider a contaminated polygon P with the goal of decontaminating P by sweeping it with
barrier curves, where the contaminant spreads instantly along all paths not blocked by a barrier.
The maximum length of curves in a sweep needed to decontaminate P is defined as its sweepwidth.
This problem was introduced Karaivanov et. al (2014) [8] who also proved that computing the
sweepwidth of even simple, orthogonal polygons is NP-hard. Therefore, we propose a polynomial
time O(log n)-approximation algorithm for the sweepwidth of n-vertex polygons with holes. We
accomplish this by rasterizing the polygon into a grid which allows a reduction to the well known
node search problem on graphs. In order to obtain a polynomially sized rasterization, we first
apply a compression technique to the polygon.

1 Introduction

Karaivanov et al. [8] introduced the problem of decontaminating an initially contaminated
planar region by sweeping it with moving barriers in the form of curves while the contaminant
instantly spreads along any path that is not blocked by a barrier. It can be seen as an
extension of the node search problem introduced by Kirousis and Papadimitriou [9] where a
graph has to be decontaminated with as few searchers (or pebbles) as possible. Next, we will
formally define these problems.

Sweepwidth [8]. Let P be a closed n-vertex polygon with holes and no intersecting edges.
P ⊂ R2 shall also denote the set of points on the polygon including its boundary. Every point
of P is either contaminated or decontaminated. We sweep P using a set of moving barriers
b : [0, 1]→ 2P , where the barriers at any time t ∈ [0, 1] consist of the points b(t). All points
in b(t) become decontaminated. Initially, all points of P (except b(0)) are contaminated.
A decontaminated point q becomes recontaminated at time t if there exists a path from a
contaminated point p to q not intersecting b(t). We say b decontaminates P if all points in
P are decontaminated at time 1 (see [8] for a more formal definition). We restrict barriers
to piecewise continuously differentiable barrier curves with a finite number of pieces and
barriers. This allows us to describe a sweep by a function b : [0, 1]2 → P such that b(s, t) is
piecewise continuous in both curve parameter s and time t, and for any t, b(·, t), is piecewise
continuously differentiable. The function s 7→ b(s, t) describes the barriers at time t. We
measure the total length of barriers at time t as the sum of the arc lengths of all pieces of
b(·, t). The bottleneck length of b is defined as the supremum over time of the sum of the
lengths of barriers in b(·, t). An exemplary sweep is depicted in Fig. 1. We refer to the
minimum bottleneck length of all decontamination sweeps of P as sweepwidth of P , denoted
sw(P ). Karaivanov et al. show that each decontamination sweep can be transformed into
a canonical sweep without increasing its bottleneck length, i. e., a sweep where all barriers
consist of one or two straight line segments connecting two points on the boundary of P .
35th European Workshop on Computational Geometry, Utrecht, The Netherlands, March 18–20, 2019.
This is an extended abstract of a presentation given at EuroCG’19. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.



5:2 Approximating the Sweepwidth of Polygons with Holes

Figure 1 Incomplete sweep of a polygon with holes. The contaminated area is depicted as light
gray, barriers as dark lines.

Node search [9]. Let G = (V, E) be an undirected graph. All edges e ∈ E are initially
considered contaminated. To decontaminate G, we can place and remove searchers on
nodes. We refer to this sequence of moves as node-search strategy. Nodes with a searcher are
considered guarded. An edge e = (v, w) ∈ E is decontaminated if v and w are guarded. e is
recontaminated if there exists a path W of unguarded nodes from u or v to a node incident
to a contaminated edge. Let the node-search number of G, ns(G), be the minimum number
of searchers needed to decontaminate all edges of G.

Related Work. For the polygon decontamination problem defined above, Karaivanov et al.
[8] construct optimal sweeps for rather simple classes of polygons and prove that computing
sweepwidth is NP-hard for simple, orthogonal polygons. To the best of our knowledge, no
approximation algorithms for the sweepwidth of general polygons are known. That problem
is generalized by Markov et al. [12] to the directed sweepwidth where barriers must start and
end on predefined parts of the boundary. They also give a rather involved lower bound for
the sweepwidth based on the sweepwidth of three non-intersecting subshapes. Various other
search problems for polygons have been analyzed in literature, including observing the entire
polygon (art gallery problem) [13], or agents having to catch [10] or spot [1] an intruder.
Another related problem is sweeping terrains with aerial vehicles [3]. If restricted to a single
curve and simple polygons, sweepwidth is equivalent to the elastic ring-width [14], solved in
time O(n2 log n) [6]. Hence, ring-width constitutes an upper bound on sweepwidth. However,
that bound can be arbitrarily bad, e. g., for an arbitrarily narrow T-shaped polygon.

Regarding different search problems on graphs, we refer the reader to the survey [4].

Our Contribution. We develop a polynomial time O(log n)-approximation algorithm for
the sweepwidth of n-vertex polygons with holes. We do this by rasterizing the polygon as a
grid graph and computing its node-search number. It will follow that O(1)-approximation of
sweepwidth is at most as hard as O(1)-approximation of the node-search number.

2 Algorithm

We will construct a sweep of P with a bottleneck length of O(log n · sw(P )) by rasterizing P

using hexagonal cells (each cell is a closed set). Their adjacency graph GP is an induced sub-



D. Rudolph 5:3

graph of the infinite triangular lattice graph 1. First, we will argue sw(P ) = Θ(ns(GP )) (using
an appropriate scale). Afterwards, we describe a compression technique to construct a polygon
P ′ with sw(P ) = Θ(sw(P ′)) and polynomially sized GP ′ . We can compute an O(log n)-
approximation of ns(GP ′) in polynomial time, also yielding an O(log n)-approximation of
sw(P ).

2.1 Rasterization
Cell size. Let RP be the diameter of the largest inscribed circle in P . We define the size
of cells, i. e., the length of edges in the lattice, as rP := RP /n. As sw(P ) ≥ RP [8], we can
guard O(n) cells throughout the entire sweep using curves of length O(sw(P )). To compute
RP , we construct the Voronoi diagram of the edges of P in time O(n log n) with Fortune’s
algorithm [5]. One of the Voronoi nodes must be the center of the largest inscribed circle.

Cell categories. We can now describe the rasterization process. There are different types
of cells that will need to be treated differently by the algorithm. To that end, we introduce
categories for cells intersecting P . Each cell not completely outside P belongs to exactly one
of the following categories:
(a) Blocked cell: cell that either contains a vertex of P , or is completely inside P and is

adjacent to two cells on opposing sides that are both intersected by at least one edge
(dark gray in Fig. 2).

(b) Full cell: cell fully inside P that is not a blocked cell (white).
(c) Empty cell: any other cell (light gray).
All cells between the outermost blocked cells belonging to the same edge pair that do not
contain a vertex shall be redefined as empty cells (see striped cells in Fig. 3).

If m cells intersect P , then we can easily compute the categories in time polynomial in
m. Let GP be the graph induced by full cells. We will argue that there are O(n) blocked
cells and that placing barriers around them separates cells belonging to different connected
components of GP .

I Lemma 1. There are O(n) blocked cells.

I Theorem 2. It holds that sw(P ) = Θ(ns(GP ) · rP ).

Proof sketch. In order to prove sw(P ) = O(ns(GP ) · rP ), we construct a sweep by first
placing barriers at a distance of two around all blocked cells and decontaminate the inside
of these barriers. One can show that this separates cells belonging to different connected
components of GP . Hence, we can decontaminate the resulting regions of P separately.
Regions without full cells can easily be decontaminated with a curve of length O(rP ). For
each component of GP , consider an optimal node-search strategy. Whenever a searcher is on
a node of GP , we place barriers at a distance of 2 around the corresponding cell. This can
be shown to decontaminate regions of full cells including adjacent empty cells.

GP has a connected component C such that ns(GP ) = ns(C) = Ω(n), as separate
connected components can be decontaminated one after another. ns(C) = Ω(n) follows from
the fact that it takes Ω(n) searchers to decontaminate an Ω(n)× Ω(n) parallelogram of cells,
which is contained in the largest inscribed circle. Let PC ⊂ P be the polygon of cells in C. It
is straightforward to prove sw(PC) = Θ(ns(PC) · rP ). sw(P ) = Ω(ns(GP ) · rP ) follows. J

1 We use hexagonal cells since then GP is planar, which would not be the case for square cells due to
diagonal adjacencies.

EuroCG’19



5:4 Approximating the Sweepwidth of Polygons with Holes

Figure 2 Polygon rasterized into a hexagonal grid. Blocked cells are depicted dark gray, empty
cells light gray, and full cells white.

Figure 3 Cells between outermost blocked cells of an edge pair are redefined as empty (marked
with dots).

Since GP is planar, we can compute an O(1)-approximation of its treewidth tw(GP ) in time
O(m log4 m) [7] if GP has m nodes. As ns(GP ) = Ω(tw(GP )) and ns(GP ) = O(tw(GP ) log m)
[2], we have an O(log m)-approximation for ns(GP ).

2.2 Polygon Compression
GP may still contain arbitrarily many cells if P contains long, narrow sections. Thus, we
will compress intervals along the x- and y-axes such that the resulting polygon P ′ can be
rasterized using a polynomial number of cells. In the following, we will describe how to
compress an interval along the x-axis where P has no vertices. We only consider maximal
such intervals with a length greater than (n + 6)RP and compress them down to that length,
thereby bounding the distance between vertices. Compressed intervals will not overlap.

Let I ′ := [x′0, x′1] ⊂ R, x′1 − x′0 > (n + 6)RP be maximal such that no vertices of P have



D. Rudolph 5:5

Figure 4 Blocked cells between two polygon edges.

their x-coordinate inside I ′. That interval will look like the top of Fig. 5, i. e., there are k

pairs of subsegments of edges, bordering part of the polygon. For each pair, we compute
their minimum distances d1, . . . , dk which are bounded by RP and the distance of the two
points of the intersection of the edge with the line x = x0 or x = x1. Then, we cut out
I := [x0, x1] := [x′0 + 2RP , x′1 − 2RP ], and replace that part as illustrated at the bottom
of Fig. 5. More specifically, each pair of edges is replaced by a rectilinear path of width
di from left to right, beginning with the lowest edge. The opening between the edges is
constricted to di on both sides. For each pair of edges i, let yi (y′i) be the y-coordinate of the
intersection of the lower edge with the left (right) boundary of I. W.l.o.g., we may assume
yi ≤ y′i. We then replace the lower edge by a path constructed as follows. Begin in (x0, yi)
and move right until either reaching x1 (see d1 in Fig. 5) or an edge of pair i− 1 (see d3).
We can clearly move right until at least x1 −

∑i−1
j=1 di ≥ x1 − n ·RP . Then we move straight

up to y′i and continue to (x1, y′i). Since x1 − x0 ≥ (n + 2) · RP , we move a distance of at
least RP right before moving up. The upper edge is replaced analogously such that that the
distance between parallel segments is di. There will be an interval I ′′ with a size of at least
x1 − x0 − (n + 1) ·Rp ≥ RP inside I where all edges are parallel to the x-axis. We compress
I ′′ to a length of RP . We obtain a polygon P ′ in polynomial time by performing the above
steps on P both in x- and y-direction.

I Lemma 3. P ′ has O(n4) vertices and intersects a polynomial number of cells of size
rP ′ = O(RP /n4).

Consequently, the size of GP ′ is polynomial in n. What remains to show is that the
compression steps did not change sweepwidth by much.

I Lemma 4. Let P̃ be the result of compressing P along one axis. Then sw(P̃ ) = Θ(sw(P )).

Proof sketch. Given a canonical decontamination sweep of P , we construct a decontamina-
tion sweep b of P which does not maintain barriers inside each interval Î := [x0−RP , x1 +RP ],
where x0, x1 are defined as above. Instead, b only uses barriers inside Î for sweeping the
region between edge pairs and subsequently places barriers just outside Î to block off that
region if necessary. We can show that this construction increases bottleneck length by at
most a constant factor. Next, we construct a sweep b̃ of P̃ from b, where b and b̃ have the
same barriers outside compressed regions and sweep corresponding compressed regions at
the same time. This allows us to show sw(P̃ ) = O(sw(P )). sw(P ) = O(sw(P̃ )) follows
analogously. J

The above lemmas directly imply the final theorem.

EuroCG’19



5:6 Approximating the Sweepwidth of Polygons with Holes

Figure 5 Illustration of polygon compression. d1, d2, d3 are the minimum distance between their
respective lines. The area inside P is depicted gray.

I Theorem 5. There exists a polynomial time O(log n)-approximation algorithm for com-
puting sw(P ).

The exact computation of ns(GP ) is in NP [11], which implies the following corollary.

I Corollary 6. O(1)-approximation of the sweepwidth of is in NP.

I Remark. If P is simple, it can be shown that sw(P ) = O(RP log n), which immediately
gives an O(log n)-approximation.



D. Rudolph 5:7

3 Conclusion

We constructed a polynomial time approximation algorithm for the relatively novel problem
of computing a polygon’s sweepwidth. Our proofs imply explicit constructions of sweeps.
However, the runtime can be considered prohibitively bad. Improving approximation factors
and runtime, potentially also for simple polygons, might therefore be interesting future work.

Acknowledgments. I thank Christian Scheideler and Kristian Hinnenthal for their help
and advice.

References
1 Binay Bhattacharya, Tsunehiko Kameda, and John Z. Zhang. Surveillance of a polygo-

nal area by a mobile searcher from the boundary: Searchability testing. In 2009 IEEE
International Conference on Robotics and Automation, pages 2461–2466, May 2009.

2 Hans L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth. Theoretical
Computer Science, 209(1):1 – 45, 1998.

3 Alon Efrat, Mikko Nikkilä, and Valentin Polishchuk. Sweeping a terrain by collaborative
aerial vehicles. In Proceedings of the 21st ACM SIGSPATIAL International Conference
on Advances in Geographic Information Systems, SIGSPATIAL’13, pages 4–13, New York,
NY, USA, 2013. ACM.

4 Fedor V. Fomin and Dimitrios M. Thilikos. An annotated bibliography on guaranteed
graph searching. Theoretical Computer Science, 399(3):236 – 245, 2008. Graph Searching.

5 Steven Fortune. A sweepline algorithm for voronoi diagrams. Algorithmica, 2(1):153, Nov
1987.

6 Jacob E. Goodman, János Pach, and Chee K. Yap. Mountain climbing, ladder moving, and
the ring-width of a polygon. The American Mathematical Monthly, 96(6):494–510, 1989.

7 Qian-Ping Gu and Gengchun Xu. Near-linear time constant-factor approximation algorithm
for branch-decomposition of planar graphs. In Dieter Kratsch and Ioan Todinca, editors,
Graph-Theoretic Concepts in Computer Science, pages 238–249, Cham, 2014. Springer In-
ternational Publishing.

8 Borislav Karaivanov, Minko Markov, Jack Snoeyink, and Tzvetalin S. Vassilev. Decontam-
inating planar regions by sweeping with barrier curves. In 26th Canadian Conference on
Computational Geometry, CCCG 2014, pages 206–211, 2014.

9 Lefteris M. Kirousis and Christos H. Papadimitriou. Searching and pebbling. Theoretical
Computer Science, 47:205–218, 1986.

10 Kyle Klein and Subhash Suri. Catch me if you can: Pursuit and capture in polygonal
environments with obstacles. In Proceedings of the Twenty-Sixth AAAI Conference on
Artificial Intelligence, AAAI’12, pages 2010–2016. AAAI Press, 2012.

11 Andrea S. LaPaugh. Recontamination does not help to search a graph. J. ACM, 40:224–245,
1993.

12 Minko Markov, Vladislav Haralampiev, and Georgi Georgiev. Lower bounds on the directed
sweepwidth of planar shapes. 2015.

13 Jorge Urrutia. Chapter 22 - art gallery and illumination problems. In J.-R. Sack and
J. Urrutia, editors, Handbook of Computational Geometry, pages 973 – 1027. North-Holland,
Amsterdam, 2000.

14 Chee-Keng Yap. How to move a chair through a door. IEEE Journal on Robotics and
Automation, 3(3):172–181, June 1987.

EuroCG’19


	Introduction
	Algorithm
	Rasterization
	Polygon Compression

	Conclusion

