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Abstract
A simultaneous representation of graphs G1, . . . , Gk consists of a (geometric) intersection repres-
entation Ri for each graph Gi such that for each pair of graphs Gi and Gj the representations
Ri and Rj are compatible in the sense that vertices shared by Gi and Gj are represented by the
same geometric object in Ri and in Rj . An important special case is the sunflower case, where
we require that Gi∩Gj yields the same shared graph S for each i 6= j. While the existence of sim-
ultaneous interval representations for k = 2 can be tested efficiently, testing it for non-sunflower
graphs with k not fixed is NP-complete. We give efficient algorithms for testing the existence of
simultaneous proper and unit interval representations for sunflower graphs with k not fixed.

1 Introduction

A fundamental problem in the area of intersection graphs is the recognition problem, where
the task is to decide whether a given graph G admits a particular type of (geometric)
intersection representation. The simultaneous representation problem is a generalization of
the recognition problem which asks for a simultaneous graph G = (G1, . . . , Gk) whether it
admits a simultaneous geometric representation R = (R1, . . . , Rk).

Simultaneous representations have first been studied in the context of graph embeddings
where the goal is to embed each simultaneous graph without edge crossings while any shared
vertices have the same coordinates in all embeddings; see [1] for a survey. The notion of
simultaneous representation of general intersection graph classes was introduced by Jampani
and Lubiw [9]. They gave an O(n2 logn) recognition algorithm for simultaneous interval
graphs with k = 2 [8]. Bläsius and Rutter later improved the running time to linear [2]. Bok
and Jedličková very recently showed that recognizing simultaneous non-sunflower interval
graphs with k not fixed is NP-complete [3]. The problem is open in the sunflower case.

Contribution. We settle these problems with k not fixed for simultaneous proper and unit
interval graphs – those graphs with an interval representation where no interval properly
contains another and where all intervals have unit length, respectively. For the sunflower
case, we provide efficient recognition algorithms. The running time for proper interval graphs
is linear, while for the unit case it is O(|V | · |E|) where V and E are the set of vertices and
edges in the union of the sunflower graphs, respectively. For the non-sunflower case, we
prove NP-completeness. The reductions are similar to the simultaneous independent work
of Bok and Jedličková for simultaneous interval graphs [3].
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Figure 1 A simultaneous proper interval representation of a sunflower graph G = (P5, P3) without
simultaneous unit interval representation (P5 green dashed, P3 red dotted, P5 ∩ P3 black bold).

2 Preliminaries

All graphs in this paper are undirected. An interval representation R = {Iv | v ∈ V } of a
graph G = (V,E) associates with each vertex v ∈ V an interval Iv = [x, y] ⊂ R such that
for each pair of vertices u, v ∈ V we have Iu ∩ Iv 6= ∅ ⇔ uv ∈ E. An interval representation
R is proper if no interval properly contains another one, and it is unit if all intervals have
length 1. A graph is a (proper/unit) interval graph if and only if it admits a (proper/unit)
interval representation. It is well-known that proper and unit interval graphs are the same
graph class. However, the simultaneous unit interval graphs are a strict subclass of the
simultaneous proper interval graphs; see Figure 1.

We use the well-known characterization of proper interval graphs using straight enumer-
ations [6]. Two adjacent vertices u, v ∈ V are indistinguishable if we have N [u] = N [v]
where N [u] = {v : uv ∈ E(H)} ∪ {u} is the closed neighborhood. Being indistinguishable is
an equivalence relation and we call the equivalence classes blocks of G. Two blocks B, B′ are
adjacent if and only if uv ∈ E for (any) u ∈ B and v ∈ B′. A linear ordering σ of the blocks
of G is a straight enumeration of G if for every block, the block and its adjacent blocks
are consecutive in σ. A proper interval representation R defines a straight enumeration
σ(R) by ordering the intervals by their starting points and grouping together the blocks.
Conversely, for each straight enumeration σ, there exists a corresponding representation R
with σ = σ(R) [6]. A fine enumeration of a graph H is a linear ordering η of V (H) such
that for u ∈ V (H) the closed neighborhood N [u] is consecutive in η.

I Proposition 2.1 ([11, 6, 7]). For a graph G the following statements are equivalent: (i) G
is a proper interval graph, (ii) G has a straight enumeration, (iii) G has a fine enumeration.
Also, for a connected proper interval graph its straight enumeration is unique up to reversal.

In the following we only consider sunflower graphs G = (G1, . . . , Gk) with shared graph S.
Note that it is necessary that S is an induced subgraph of each input graphGi. Also note that
G admits a simultaneous (proper/unit) interval representation if and only if each component
of its union graph

⋃k
i=1 Gi does. We hence restrict our attention to sunflower graphs that

are connected in the sense that their union graph is connected.

3 Sunflower Proper Interval Graphs

Let G = (G1, . . . , Gk) be a sunflower graph with shared graph S = (VS , ES). By Proposi-
tion 2.1 each Gi has at least one fine enumeration. If there are fine enumerations σ1, . . . , σk
of G1, . . . , Gk that coincide on VS , then they induce a fine enumeration σS of S. We can
then find a proper interval representation of S corresponding to σS that can be extended
to proper interval representations of G1, . . . , Gk in linear time [10]. Otherwise there is no
simultaneous proper interval representation. Using PQ-trees [5, 4], the existence of such an
ordering σS can be tested in linear time.

I Theorem 3.1. Given a sunflower graph G = (G1, . . . , Gk), it can be tested in linear time
whether G admits a simultaneous proper interval representation.
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Figure 2 Simultaneous proper interval representation of G1 (green solid), G2 (red dotted), G3

(blue dashed) with shared graph S (black bold). S has three blocks A, B, C. We denote the
component of Gi containing a block D by CiD. C2

A, C2
B , C3

B , C2
C are loose. C2

A is independent.
(C2

B , C
3
B) is a reversible part. (C2

C) is not a reversible part, since C1
C is aligned at C and not loose.

Next we characterize all simultaneous proper interval representations of a sunflower
graph. Let G = (G1, . . . , Gk) be a sunflower graph with shared graph S = (VS , ES) and
for each Gi ∈ G let σi be a straight enumeration of Gi. We call the tuple (σ1, . . . , σk) a
simultaneous enumeration if for any i, j ∈ {1, . . . , k} and u, v ∈ VS the blocks Bi(u), Bi(v)
and Bj(u), Bj(v) of Gi and Gj containing u, v are not ordered differently by σi and σj , i.e.,
we do not have (Bi(u), Bi(v)) ∈ σi and (Bj(v), Bj(u)) ∈ σj or vice versa.

I Theorem 3.2. Let G = (G1, . . . , Gk) be a sunflower graph. There exists a simultaneous
proper interval representation R = (R1, . . . , Rk) of G if and only if there is a simultaneous
enumeration (σ1, . . . , σk) of G. If (σ1, . . . , σk) exists, there also exists a simultaneous proper
interval representation R = (R1, . . . , Rk) with (σ(R1), . . . , σ(Rk)) = (σ1, . . . , σk).

It turns out there is a unique straight enumeration of S induced by all simultaneous
proper interval representations of G (up to reversal) if G is connected. For the following
definitions see Figure 2. Let C be a component of a graph G in G. We call C loose if all
shared vertices in C are in the same block of S. Reversal of loose components is the only
“degree of freedom” among simultaneous enumerations, besides full reversal. We say two
vertices u, v ∈ VS align C if they are in different blocks of C. We call C independent if it is
loose and not aligned by any two vertices of S.

We say C is aligned at a block B of S if it is aligned by two vertices u, v in B. Any
two components aligned at the same block can not be reversed independently. For each
block B of S, let C(B) be the connected components among graphs in G aligned at B. If
all components in C(B) are loose, we call it a reversible part. Note that a reversible part
contains at most one component of each graphGi. Let (σ1, . . . , σk) and (σ′

1, . . . , σ
′
k) be tuples

of straight enumerations of G1, . . . , Gk. We say (σ′
1, . . . , σ

′
k) is obtained from (σ1, . . . , σk)

by reversing reversible part C(B) if σ′
1, . . . , σ

′
k are obtained by reversal of all components in

C(B). We characterize the simultaneous enumerations of G as follows.

I Theorem 3.3. Let G = (G1, . . . , Gk) be a connected sunflower graph with simultaneous
enumeration ρ. Then ρ′ is a simultaneous enumeration of G if and only if ρ′ can be obtained
from ρ or its reversal ρr by reversing independent components and reversible parts.

4 Sunflower Unit Interval Graphs

We now characterize for a sunflower graph G = (G1, . . . , Gk) with shared graph S the simul-
taneous enumerations (ζ1, . . . , ζk) that can be realized by a simultaneous unit interval rep-
resentation (R1, . . . , Rk), in the sense that σ(Ri) = ζi for i ∈ {1, . . . , k}. For i ∈ {1, . . . , k}
let (Vi, Ei) = Gi. Let further V = V1 ∪ · · · ∪Vk. For a straight enumeration η of some graph
H we say for u, v ∈ V (H) that u <η v if u is in a block before v, and we say u ≤η v if u = v

or u <η v. We call ≤η the partial order on V (H) corresponding to η. Note that for distinct
u, v in the same block we have neither u >η v nor u ≤η v. For convenience, we write u ≤i v
and u <i v instead of u ≤ζi

v and u <ζi
v, respectively.

EuroCG’19



48:4 Simultaneous Representation of Proper and Unit Interval Graphs

s1 a b s2
G1 G2

s1 d f s2 s1 s2
c

d

c e

fe

a b

Figure 3 A sunflower graph G = (G1, G2) with shared vertices s1, s2. In the corresponding
simultaneous enumeration ζ we have the (s1, s2)-chain C = (s1, a, b, c, s2) and the (s1, s2)-bar
B = (s1, d, e, f, s2), both of size 5. Hence, G has conflict (C,B) for ζ.
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Figure 4 Two graphs G1, G2 with V1 = {v, w}, V2 = {u, x}, u ≤η x, and v ≤η w. In Figure 4a
we have a forbidden configuration with (i) vw ∈ E1, (ii) ux /∈ E2, (iii) v ≤η u, and (iv) x ≤η w. If
three of these four conditions are met, we can conclude that the remaining one is false. Namely, in
Figure 4b, 4c, 4d and 4e, we conclude ux ∈ E2, vw /∈ E1, w <η x, and u <η v, respectively. We
use arrows to represent a partial order between two vertices. We draw them green solid if they are
adjacent, red dotted if they are non-adjacent in some graph Gi, and black dashed otherwise.

Let u, v ∈ VS with u 6= v. A (u, v)-chain of size m in (Gi, ζi) is a sequence (u =
c1, . . . , cm = v) of vertices in Vi with c1 <i · · · <i cm that corresponds to a path in Gi. A
(u, v)-bar between u and v of size m in (Gi, ζi) is a sequence (u = b1, . . . , bm = v) of vertices
in Vi with b1 <i · · · <i bm that corresponds to an independent set in Gi; see Figure 3.

If there is a (u, v)-chain C in Gi of size ` ≥ 2 and a (u, v)-bar B in (Gj , ζj) of size at
least `, then we say that (C,B) is a (chain-bar-)conflict and that G has conflict (C,B) for ζ.
Note that one can reduce the size of a (u, v)-bar by removing intervals between u, v. Thus,
we can always assume that in a conflict, we have a bar and a chain of the same size ` ≥ 2.

Assume G has a simultaneous unit interval representation realizing ζ. If a graph G ∈ G
has a (u, v)-chain of size ` ≥ 2, then Iu, Iv have a distance smaller than ` − 2. On the
other hand, if a graph G ∈ G has a (u, v)-bar of size `, then Iu, Iv have a distance greater
than ` − 2. Hence, sunflower graph G has no conflict. The absence of conflicts is not only
necessary, but also sufficient.

I Theorem 4.1. A sunflower graph G with simultaneous enumeration ζ has a simultaneous
unit interval representation that realizes ζ if and only if it has no conflict for ζ.

Proof Sketch. Let α? be the union of the partial orders on V1, . . . , Vk corresponding to
ζ1, . . . , ζk. We set α to be the transitive closure of α?, meaning α is the partial order on
V induced by ζ. After identifying certain “indistinguishable” vertices of V , we can assume
that α is a linear ordering on V1, . . . , Vk. Assuming there is no conflict, we then construct
a simultaneous unit interval representation R. To this end, we first extend α to a linear
ordering on V and thus of the interval starting points. Afterwards, we decide for every
pair u, v of vertices from different graphs whether Iu, Iv intersect to obtain an order of the
interval end points. Note that each partial order α|Vi

already is a fine enumeration of Gi.
All necessary extensions of α and decisions for adjacencies between vertices of different

graphs arise from one forbidden configuration; see Figure 4a. We first go from right to left
and extend α according to Figure 4e. In that run only necessary extensions are made. The
key idea in that run is that the extensions of α correspond to extensions of pairs of chains and
bars of equal size with a shared end to the right. If the forbidden configuration is obtained,
then such a chain-bar pair also shares the second end and therefore yields a conflict. With
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this preparation, we can then go from left to right and greedily extend α to a linear ordering
τ that respects the implication of Figure 4e. As such τ avoids the forbidden configuration.
We finally use τ to decide adjacency for every pair of vertices according to Figure 4b and
thereby still avoiding the forbidden configuration. We obtain a graph H that has G1, . . . , Gk
as induced subgraphs and for which τ is a fine enumeration. By Proposition 2.1H is a proper
and thus a unit interval graph. A unit interval representation of H induces a simultaneous
unit interval representation of G = (G1, . . . , Gk). J

We now give a recognition algorithm for sunflower unit interval graphs. By Theorem 3.1
we obtain a simultaneous enumeration ζ of G, unless G is not even a simultaneous proper
interval graph. By Theorem 4.1 we need to decide if G has a simultaneous enumeration η
without conflicts. By Theorem 3.3, if it exists, η results from ζ by reversing reversible parts
and independent components. We formulate this as a 2-SAT formula with a variable for
each reversible part and for each independent component that encodes its orientation.

For each pair of shared vertices u, v we formulate clauses that exclude conflicts for u,v.
The minimal (u, v)-chains for Gi are independent of reversals. The size of a largest (u, v)-bar
in Gi only depends on the orientations of the connected components C and D containing
u and v, respectively, while components in-between always contribute their maximum inde-
pendent set regardless of whether they are reversed. For each of the at most four relevant
combinations of orientations we check whether it produces a conflict. In that case we add
a clause that forbids that combination (note that the orientations of C and D are determ-
ined by one reversible part or independent component each, if they are loose at all). The
2-SAT formula F contains these clauses for all shared vertex pairs and all graphs Gi. By
construction F has a solution if and only if G is a simultaneous unit interval graph.

I Theorem 4.2. Given a sunflower graph G = (G1, . . . , Gk), we can decide in O(|V | · |E|)
time, whether G is a simultaneous unit interval graph, where (V,E) = G1 ∪ · · · ∪Gk.
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