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Abstract
In this extended abstract, we present new hardness and algorithmic results for the graph distances
presented at EuroCG 2017 [10]. We consider the case of the graph distance based on the Fréchet
distance for plane graphs. We prove that deciding this distance is NP-hard and show how our
general algorithmic approach yields an exact exponential time algorithm and a polynomial time
approximation algorithm for this case.
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1 Introduction

Motivation We study the task of comparing two embedded graphs. There are many
applications that work with graphs embedded in an Euclidean space, such as road networks.
For instance, by comparing two road networks one can assess the quality of map construction
algorithms [3, 4], see Figure 1.

(a) Two partial map reconstructions of Chicago. (b) Different topology.

Figure 1 Figure (a) shows the results of two map construction algorithms (blue: reconstuction
by Davies et al. [12]; red: reconstruction by Ahmed et al. [5]). An appropriate measure for assessing
the quality of the reconstruction should compare both the geometry and the topology of the
reconstructions and the ground truth.

Related Work A few different approaches have been proposed for comparing such graphs.
These are subgraph-isomorphism, edit distance [11], algorithms that compare all paths [1]
or random samples of shortest paths [13], and the local persistent homology distance [2].
However, most of these capture only the geometry or only the topology of the embedded
graphs. The sampling-based distance presented in [9] captures both, but it is not a formally
defined distance. The traversal distance [7] is similar to the measures proposed here but
captures the combinatorial structure of the graphs to a lesser extent.

Definitions and Previous Results Let G1 = (V1, E1) and G2 = (V2, E2) be two undirected
graphs with vertices embedded as points in Rd (typically in the plane) that are connected
by straight-line edges. We consider a mapping s : G1 → G2 that maps each vertex v ∈ V1
to a point s(v) on G2 (not necessarily a vertex) and that maps each edge {u, v} ∈ E1 to a
simple path in G2 with endpoints s(u) and s(v). Our graph distances are generalizations of
the (weak) Fréchet distance, popular distance measures for curves [8], to graphs: We define
the directed (weak) graph distance ~δ(w)G as

~δ(w)G(G1, G2) = infs:G1→G2 maxe∈E1 δ(w)F (e, s(e)),

where δ(w)F denotes the (weak) Fréchet distance, s ranges over all graph mappings from G1
to G2, and e and its image s(e) are interpreted as curves in the plane.

The general algorithm to compute the directed (weak) graph distances is based on the
definition of valid ε-placements of the vertices and edges. An ε-placement of a vertex v is a
maximally connected component of G2 restricted to the ε-ball Bε(v) around v. A (weak)
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ε-placement of an edge e = {u, v} ∈ E1 is a path P in G2 with endpoints on ε-placements
Cu of u and Cv of v such that δ(w)F (e, P ) ≤ ε. In that case, we say that Cu and Cv are
reachable from each other. An ε-placement Cv of v is (weakly) valid if for every neighbor u
of v there exists an ε-placement Cu of u such that Cv and Cu are reachable from each other.

Deciding the directed (weak) graph distance is NP-hard for general graphs, but we can
compute the (weakly) valid ε-placements in polynomial time [6, 10]. If there is a vertex with
no (weakly) valid ε-placement it follows that ~δ(w)G(G1, G2) > ε. Conversely, the existence
of a (weakly) valid ε-placement for each vertex ensures ~δ(w)G(G1, G2) ≤ ε for several cases,
namely if G1 is a tree (both graph distances) and if G1 and G2 are plane graphs (weak graph
distances). Therefore, the distances are decidable in polynomial time in these cases.

New Results In this paper, we show that deciding whether ~δG(G1, G2) ≤ ε remains NP-hard
if G1 and G2 are plane graphs, that is the existence of a valid ε-placement for each vertex is
not a sufficient criterion for ~δG(G1, G2) ≤ ε here. Furthermore, we prove an inapproximability
result for this case. Subsequently, we present an exact exponential time algorithm and a
polynomial time approximation algorithm based on the general algorithmic approach.

2 Hardness Results

I Theorem 1. For plane graphs G1, G2, deciding whether ~δG(G1, G2) ≤ ε is NP-hard.

Proof. Here, we give a concise version of the proof. For a more elaborated version, see [6].
We prove the NP-hardness by a reduction from Monotone-Planar-3-Sat (MP3S). That
is, we construct straight-line embedded graphs G1, G2 based on a MP3S instance A, with
edges of G2 labeled True or False. We describe the construction of the subgraphs (gadgets)
for the Variables and Clauses of A and prove which binary combinations can be realized
such that all edges and their images are within Fréchet distance at most ε. Figure 2 and 3
illustrate the gadgets and a partial graph construction. We denote the ε-tube around the
edge e by Tε(e) = e

⊕
Bε. A path labeled True (False) is shortly denoted as True (False)

signal. All vertices of the graph can be either placed arbitrarily within a given ε-surrounding
or must lie at the intersection of two lines. This ensures that the construction uses rational
coordinates only and can be computed in polynomial time.

For the Variable gadget, we draw two edges, e1, e2, of G1 in a 90◦− 120◦ angle incident
to a vertex v and add vertices w1 (w2) of G2 at the intersection of the outer boundary of
Tε(e2) (Tε(e1)) and a line through e1 (e2). Furthermore, we add a vertex w3 of G2 at the
intersection of the boundaries of Tε(e1) and Tε(e2). We connect w1 and w2 with w3 and draw
an edge from w1 and w2 inside the ε-tubes around e1 and e2, labeled True. Analogously, we
place two edges from w3 labeled False. For the Variable gadget a True-True combination
is not possible: The vertex v has two placements p1 and p2. Assume we choose p1. Then, one
can map e1 to a path containing the edge of G2 with the True labeling inside Tε(e1). Now,
we want to map e2 to a path P starting at some point of p1, where P contains the edge of
G2 with the True labeling inside Tε(e2). Thus P must contain w3 and w1. As δF (e2, P ) > ε

(here, we only have δwF (e2, P ) ≤ ε) for any such path P , this labeling is not realizable. It is
easy to see that any other labeling of paths e1 and e2 are mapped to is realizable.

A Permute gadget is a differently labeled Variable gadget. For the Split gadget,
we add a third edge e3 of G1 to the Variable gadget and add edges of G2 from w2 and
w3 inside the ε-tube around e3. For the labeling, see Figure 2. A False signal can not be
converted to a True signal in Split gadget or in the Permute gadget. However, a True
signal can but does not need to be converted to a False signal in the Permute gadget.

EuroCG’19
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Figure 2 Gadgets to build a graph-similarity instance given a Monotone-Planar-3-Sat instance.
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x1 x2

(x1 ∨ x2 ∨ x3)

x3

Figure 3 Construction of one Clause gadget given the MP3S instance A with variables V =
{x1, x2, . . . , x5} and clauses C = {(x1 ∨ x2 ∨ x3), (x3 ∨ x4 ∨ x5), (x̄1 ∨ x̄3 ∨ x̄5)}
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Figure 4 Illustration of the proof of Theorem 2.

For the Clause gadget, we first introduce a NAE-Clause gadget where it is required
that not all three values in a clause are equal. For the construction, see Figure 2. Let q1
be the point on e1 with distance ε to w1 and w2. To force walking back and forth along e1
for a combination of labels which we want to exclude, we have to ensure that a path from
w1 to w2 leaves Bε(q1) but stays, once entered, inside Bε(v). For the other pairs, (w1, w3)
and (w2, w3) we do the same. A possible drawing of these paths maintaining the planarity
of G2 is shown in the lower sketch of Figure 2. Suppose we map v to s(v) as shown in
the Figure 2. Then, edges e2 and e3 can be mapped to paths through edges labeled True.
But we cannot map e1 to such a path P : When P reaches vertex w1, any corresponding
reparameterization of e1 realizing δF (e1, P ) ≤ ε must have reached q1 as q1 is the only point
with distance at most ε to w1 on e2. As P leaves Bε(q1) between w1 and w2 and any point
on e1 with distance at most ε to the part of P outside Bε(q1) lies between v and q1 it follows
that δF (e1, P ) > ε. For symmetric reasons it follows that any other all-equal labeling cannot
be realized. However, there is a placement of v, such that all three edges e1, e2 and e3 can
be mapped to a path in G2 with Fréchet distance at most ε, for every not-all-equal labeling.
Note that Monotone-Planar-NAE-3-Sat is in P but, as shown in Figure 2, we can use
the NAE-Clause gadget as the core of the Clause gadget.

Placing the other gadgets with no overlap (using the Wire gadget) and noting that all
constructed subgraphs are plane, we can, given a MP3S instance A, construct plane graphs
G1 and G2 such that a map from G1 to G2, which realizes ~δG(G1, G2) < ε, induces a solution
of A: For each positive NAE-clause, at least one of the outgoing edges of G1 must be mapped
to a path through an edge labeled True and thus the corresponding variable v gets the
value True. In this case, v cannot set any of the negative clauses True, because the other
outgoing edge must be mapped to a path through the edge of G2 labeled False and this
signal can never be switched to True. The same holds for the case of negative NAE-clauses.

Conversely, given a solution S of the MP3S instance A, we can construct a placement of
G1 by choosing p1 in the Variable gadget for each variable with a True label in S and
p2 for each variable with a False label in S. All edges of the other gadget can be mapped
to G2 in a signal preserving manner. Note that if there exists a clause C in A with three
positive labeled variables in S, we change one signal in the Permute gadget from True to
False. Thus, we have found a mapping realizing ~δG(G1, G2) ≤ ε. J

The characteristics of the gadget still hold for a slightly bigger value of ε which leads to:

I Theorem 2. For plane graphs G1, G2 it is NP-hard to approximate the directed graph
distance ~δG(G1, G2) within a 1.10566 factor.
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Proof. We give a detailed proof for the NAE-Clause gadget and note that a similar
argument holds for the other gadgets. See Figure 4 for an illustration of the proof.

Let us fix ε = 1. We draw the green spike in the NEA-Clause gadget such that its
peak is arbitrarily close to the intersection of a straight line through the edge e1 and the
1-circle around v. Now, we need to compute the smallest value δmin, such that B1(v) is
completely contained in B1+δmin(q1). Then, for any value δ < δmin, there exists a drawing
of the spikes, such that the characteristics of the NAE-Clause gadget still hold, e.g., there
is no placement of v allowing an all-equal-labeling.

Note that δmin equals the distance from q1 to v, when q1 is at distance 1 + δmin to w1.
Let q′ be the position of q1 for δ = 0 and let d be the distance between q′ and q1. Then
we have tan(30◦) = δmin+d

1 = δmin + d. Furthermore, we have d =
√

(1 + δmin)2 − 1 and
therefore δmin = tan(30◦) −

√
(1 + δmin)2 − 1, which solves to δmin = 1

4 −
1

4
√

3 ≈ 0.10566.
The factor by which ε can be multiplied is greater than 1 + δmin for all other gadgets. Thus,
δmin is the critical value for the whole construction and the theorem follows. J

3 Algorithms for Plane Graphs

Our general algorithm consists of the following four steps. 1. Compute ε-placements of
vertices, 2. Compute reachability information, 3. Prune invalid ε-placements, 4. Based
on the remaining ε-placements, decide if there exists a mapping from G1 to G2 realizing
~δ(w)G(G1, G2) ≤ ε. See [6, 10] for a detailed presentation.

Deciding the Graph Distance in Exponential Time A brute-force method to decide the
directed graph distance is to iterate over all possible combinations of valid vertex placements.
For each such combination, we iterate over all edges of G1 to determine whether the vertex
placements allow to map each edge to a path with Fréchet distance smaller than ε. This can
be done in constant time per edge using the previously computed reachability information.
Thus, the runtime is O(m1 ·mn1

2 ), where ni = |Vi| and mi = |Ei|.
An alternative approach is the following, which in essence is an extension of step 3 of

the general algorithm. First, we remove all tree-like substructures of G1 and place these as
described in [10]. Next, we decompose the remainder of G1 into chordless cycles, where a
chord is a maximal path in G1 incident to two faces (see Figure 5). We place the parts of G1
from bottom up, deciding in each step if we can place two adjacent cycles and all the nested
substructures of the cycles simultaneously. The time and space complexity of this approach
are summarized in the following Theorem. For more details and a proof, see [6].

I Theorem 3. For plane graphs, the graph distance can be decided in O(Fm2F−1
2 ) time and

O(m2F−1
2 ) space, where F is the number of faces of G1.

Note that this method is superior to the brute-force method if 2F − 1 < n1.

Polynomial Time Approximation Algorithm The general algorithmic approach yields a
good approximation for deciding the graph distance for plane graphs with some geometric
restrictions. Again, the decision is based on the existence of valid ε-placements. Thus, the
runtime is the same as for the case where G1 is a tree (O(n1 ·m2

2) time and space).

I Theorem 4. Let G1 := (V1, E1) and G2 := (V2, E2) be plane graphs. Assume that each
edge of G1 has length greater than 2ε. Let αv be the smallest angle between two edges of G1
incident to vertex v with deg(v) ≥ 3, and let α := 1

2 minv∈V1(αv). If there exists at least one
valid ε-placement for each vertex of G1, then ~δG(G1, G2) ≤ 1

sin(α)ε.

EuroCG’19
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Figure 5 A plane graph is recursively decomposed into chordless cycles.
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Figure 6 Illustration of the proof of Theorem 4
.

Proof. Let α be the smallest angle between two edges incident to a vertex v with degree
at least three and let C1, C2, . . . , Cj be the valid placements of v for a given distance value
ε. Furthermore, let VCi

be the set of vertices of Ci. It can be easily shown that for a
larger distance value of ε1 ≥ 1

sin(α)ε there exist vertices v1, v2, . . . , vk, embedded inside Bε1 ,

such that the subgraph C = (V ′, E′), where V ′ =
j⋃
i=1

VCi ∪ {v1} ∪ {v2} ∪ · · · ∪ {vk} and

E′ = {e = {uw} ∈ E2|u ∈ V ′, w ∈ V ′} is connected (see Figure 6a)). Note that this property
is not true if we allow edges with length smaller than 2ε (see Figure 6b)). However, with
the condition of a minimal edge length of 2ε, there is only one valid 1

sin(α)ε-placement C
for each vertex with degree at least three. Furthermore, every valid ε placement is a valid

1
sin(α)ε-placement. Now, for two paths which start and/or end at a common vertex v, v is
mapped to a point on C. This ensures that each edge of G1 is mapped correctly. J
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