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—— Abstract
We study the complexity of clustering curves under k-median and k-center objectives in the
metric space of the Fréchet distance and related distance measures. The k-center problem has
recently been shown to be NP-hard, even in the case where k£ = 1, i.e. the minimum enclosing ball
under the Fréchet distance. We extend these results by showing that also the k-median problem
is NP-hard for £ = 1. Furthermore, we show that the 1-median problem is W[1]-hard with the
number of curves as parameter. We show this under the discrete and continuous Fréchet and
Dynamic Time Warping (DTW) distance. Moreover, closing some gaps in the literature, we show
positive results for the (k, £)-center variant under the discrete Fréchet distance. In particular, we
give an 9] (mn)-time (1 + €)-approximation algorithm and a polynomial-time exact algorithm for
fixed k, £ and e.

1 Introduction

Clustering is an important tool in data analysis, used to split data into groups of similar
objects. Their dissimilarity is often based on distance between points in Euclidean space.
However, the dissimilarity of (polygonal) curves is more accurately measured by specialised
measures: Dynamic Time Warping (DTW) [9], continuous and discrete Fréchet distance [1, 6].
We focus on centroid-based clustering, where each cluster has a centre curve and the
quality of the clustering is based on the similarity between the centre and the elements inside
the cluster. In particular, given a distance measure §, we consider the following problems:

» Problem 1 (k-median for curves with distance ¢). Given aset G = {g1,...,gm} of polygo-
nal curves, find a set C = {cq,...c} of polygonal curves that minimizes 9€G mink_, §(c;, g).

» Problem 2 (k-center for curves with distance §). Givenaset G = {g1, ..., gm } of polygonal
curves, find a set C = {cy,...cx} of polygonal curves that minimizes max,eg minf_; §(c;, g).

We call the 1-median problem the average curve problem. Clustering on points for general
k in the plane or higher dimension is often NP-hard [8] and clustering curves tends to be
hard even when k = 1 and the curves lie in 1D. For instance, Buchin et. al. [2] show that the
1-center problem for the discrete and continuous Fréchet distance in 1D is NP-hard and that
for the discrete Fréchet distance, it is NP-hard to approximate with a ratio better than 2.
In this paper, we show that the average curve problem for discrete and continuous Fréchet
distance in 1D is NP-complete and W[1]-hard when parametrised in the number of curves m.

Denote the set of all warping paths (or alignments, see also [9]) between curves z and y by

Wy . For any integers p,q > 1, define DTW{(x,y) := (minWewx7?/ Z(m’)ew |2 — yj|p> (I/P.
We call DTW{ the (p,q)-DTW distance.

The average curve problem for the (2,2)-DTW distance has resisted efficient algorithms
so far, which motivated several heuristic approaches [7, 9]. A formal proof of NP-hardness
has only recently been given by Bulteau et. al. [3], who additionally show the (2,2)-DTW
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problem is W[1]-hard when parametrised in the number of input curves m and there exists no
f(m) - n°™)_time algorithm unless the ETH fails. In this paper, we prove the same hardness
results of the average curve problem for the (p,q)-DTW distance for any p,q € N, with a
different method. While Bulteau et. al. [3] note at the end of Section 5 their method might
generalise to more variants of the DTW distance, when p # ¢, the (p,q)-DTW distance
does not fit in their framework since then ¢/p is a non-trivial exponent. Furthermore, when
p = q = 1, the variant has the form required in their framework, but the condition required
for their hardness proof of an intermediate problems fails.

Since we still want efficient algorithms to do curve clustering, we look at a variant of
these problems: we only look for centre curves with at most a fixed complexity, denoted by
L. So, the (k, £)-center problem is to find a set of curves C = {¢q,...c}, each with at most
¢ vertices that minimizes max,cg min?_; §(c;, g) and the (k,¢)-median problem is defined
analogously. Finding short centre curves is also useful for applications, as it can prevent
overfitting the centre to details of individual input curves.

Although the general case for this variant is still NP-hard, we can find efficient algorithms
when k and ¢ are fixed. The (k, ¢)-center and (k, ¢)-median problems were introduced by
Driemel et. al. [5], who obtained an O(mn)-time (1 + ¢)-approximation algorithm for the
(k, £)-center and (k, £)-median problem under the Fréchet distance for curves in 1D, assuming
k, ¢, e are constant. In [2], we gave polynomial-time constant-factor approximation algorithms
for the (k, £)-center problem under the discrete and continuous Fréchet distance for curves in
arbitrary dimension. In this paper, we give a (1 4 €)-approximation algorithm that runs in
5(mn) time and a polynomial-time exact algorithm to solve the (k,¢)-center problem for
the discrete Fréchet distance, when k, ¢ and ¢ are fixed.

2 Hardness of finding average curves

To show the hardness of the average curve problem for the Fréchet and DTW distance, we
reduce from a variant of the NP-hard Shortest Common Supersequence (SCS) problem [10, 11],
which we will call the Fized Character Common Supersequence (FCCS) problem. If s is a
string and x is a character, #.(s) denotes the number of occurrences of z in s.

» Problem 3 (Shortest Common Supersequence (SCS)). Given a set S of m strings with
length at most n over the alphabet ¥ and an integer ¢, does there exists a string s* of length
t that is a supersequence of each string s € S?

» Problem 4 (Fixed Character Common Supersequence (FCCS)). Given a set S of m
strings with length at most n over the alphabet ¥ = {A, B} and i,j € N, does there exists a
string s* with #4(s*) = ¢ and #p(s*) = j that is a supersequence of each string s € S?

» Lemma 1. The FCCS problem is NP-hard. The FCCS problem with m as parameter is
W/1)-hard. There exists no f(m)-n°™ time algorithm for FCCS unless ETH fails.

The proof idea is to reduce from SCS: given an instance (S,t) of SCS, construct S’ =
{s + AB?*A + c(s) | s € S}, where c(s) denotes the string constructed by replacing all
A’s in s by B and vice versa. We reduce to the instance (S’,¢ + 2,3t). If s* is a common
supersequence of length t for S, then s* + AB* A + ¢(s*) is a supersequence of S’ with the
correct character count. Optimal supersequences of S’ can be decomposed into this form. <

2.1 Complexity of the average curve under the Fréchet distance

We will show the hardness of finding the average curve under the discrete and continuous
Fréchet distance dgr and dp via the following reduction from FCCS. Given an instance
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Figure 1 Five 1D-curves from G U R;,; in the reduction for the Fréchet average curve problem
and a center curve constructed from ABBA (purple) as in Lemma 2. Matchings are indicated by
dotted lines. Note that each of these matchings achieves a (discrete) Fréchet distance of 1.

(S,1,7) of FCCS, we construct a set of curves using the following vertices in R: g, = —1,
gy =1, 94 = —3, and g = 3. For a string s € .S, we map each character to a subcurve in R:

A= (9agb) ™ 94(909)" B — (9694) " g5(969.)" .

The curve ~(s) is constructed by concatenating the subcurves resulting from this mapping,
G ={v(s) | s € S} denotes the set of these curves. Additionally, we use the curves

A; = gv(9a9)"  Bj = 9a(989a)"

We will call subcurves containing only g4 or gp vertices letter gadgets and subcurves
containing only g, or g, vertices buffer gadgets. Let R; ; contain curves A; and Bj, both with
multiplicity o = |S|(|S| —1) + 1. We reduce to the instance (GU R; j,r) of the average curve
problem, where r = |S| 4+ 2a.. We use the same construction for the discrete and continuous
case. For an example of this construction, take S = {ABB, BBA, ABA}, i =2, j = 2. Then
ABBA is a supersequence of S with the correct number of characters, see Figure 1.
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» Lemma 2. If (S,1,j) is a true instance of FCCS, then (GU R; ;,r) is a true instance of
the average curve problem for discrete and continuous Fréchet.

Proof. Since dp(z,y) < dgr(x,y) for all curves z,y, considering the discrete version suffices.
Since (5,4, j) is a true instance of FCCS, there exists a common supersequence s* of S
with #4(s*) =i and #p5(s*) = j. Construct the curve ¢ of complexity 2|s*| + 1, given by

0 if I is odd
¢ =< —2 ifliseven and S?‘/Q =A,
2 if [ is even and 5;‘/2 =B
for each I € {1,...,2|s*| 4+ 1}. Note s* is a supersequence of the sequence of letter gadgets in

any curve g € G U R; ; and therefore we can match all letter gadgets from g within distance
1 such that we get dar(c,g) < 1. This means > g,  dar(c,g9) < [S|+ 20 =r. <

For the converse, we can show that if there is a curve ¢* with deGuRi‘j dp(c*,g) <,
then dp(c*,g) < 2 for all ¢ € GU R, ;. This means we can apply the hardness proof for the
1-center problem under the Fréchet distance from [2] to partition ¢* into A-parts, B-parts
and buffer parts and construct a supersequence for S from the sequence of A/B-parts in c¢*.

» Lemma 3. If (GUR, ;,r) is a true instance of the average curve problem for discrete and
continuous Fréchet, then (S,1,j) is a true instance of FCCS.

Since the reduction runs in polynomial time and the number of input curves is bounded
by a quadratic function in |S|, we get the following result.

» Theorem 4. The average curve problem for discrete and continuous Fréchet distance is
NP-hard. When parametrised in the number of input curves m, this problem is W[1]-hard.

2.2 Complexity of the average curve under the DTW distance

We will show that the average curve problem for (p,q)-DTW is NP-hard for all p,q € N. We
use the same reduction from Section 2.1, but now map the characters of s € S to

A= gi9l9 B — 959,95

use the curves A; = gy (g2gy)" and B; = gy (g,95)", and set r = 3 (i +j — [s])9/? +
a(i?P 4 ja/P) B = [r/e9] + 1, a = |S|, where £ > 0 is chosen sufficiently small and depends
only on i, j,p, q. See Figure 2 for an example with S = {ABB, BBA, ABA} and i = j = 2.

» Lemma 5. If (S,4,5) is a true instance of FCCS, then (GU R, ;,7) is a true instance of

(p,q)-DTW average curve.

Proof. This is analogous to Lemma 2. |
For the converse, we identify vertices in a satisfying curve ¢* that are close to g, or g,

such that g7 and gg subcurves must be matched to them and construct a supersequence s’
out of them. The curves A; and B; are used to show that # 4(s") = ¢ and #p5(s") = J.

» Lemma 6. If (GUR, ;,r) is a true instance of (p,q)-DTW average curve, then (S,i,7j) is
a true instance of FCCS.

Since the reduction runs in polynomial time and the number of input curves is bounded
by a linear function in |S|, we get the following result:

» Theorem 7. The average curve problem for the (p,q)-DTW distance is NP-hard, for any
p,q € N. When parametrised in the number of input curves m, this problem is W/[1]-hard.
There exists no f(n)-n°™ time algorithm for this problem unless ETH fails.
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¥ Figure 2 Five 1D-curves from G U R; ; and a center curve constructed from ABBA (purple) as
in Lemma 5. Fat horizontal lines indicate 3 consecutive vertices. Vertices that match at distance 0
touch, those matching at distance 1 are indicated by dotted lines. The center has 1 mismatch with the
first 3 curves and 2 with the final two, so the total cost here is 3- (17)%/? +2a- (2-17)/P = 34 2a.- 27,
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3 (14 ¢)-approximation for (k,()-center clustering for the discrete
Frechet distance in R?

In this section, we develop a (1 + €)-approximation algorithm for the (k, ¢)-center problem
under the discrete Fréchet distance that runs in O(mnlog(n)) time for fixed k, ¢, e.

Given a set G of m input curves in R¢ of complexity at most n each, use the algorithm
by Buchin et. al. [2] to compute a set C of k curves that forms a 3-approximation for the
(k, £)-center problem in O(km - €nlog(¢+ n)) time. Call the cost of these centers A. Let C*
be an optimal solution that achieves cost O. For each vertex p* in C*, there is a vertex ¢ on
an input curve with ||p* — ¢|| < O and there is a vertex p in C with ||p — ¢|| < A. So, by the
triangle inequality, all vertices of C* lie within a ball of radius 2A centred at a vertex of C.

We can cover these balls with a regular grid of O(e~%) vertices with distance of £-2A/(3v/d),
so that there exists a vertex g(p*) on such a grid with [|p* — g(p*)|| < eA/3 = 0. So, for
every curve ¢* € C*, there exists a single curve g(c¢*) of gridpoints with dgr(g(c*), ¢*) < €O,
which means that for all g € G, there exists a curve ¢* such that dgr(g,9(c*)) < (1 +¢)O.
This means the set {g(c*) | ¢* € C*} gives a (1 + €)-approximation, which we can find by
iterating over all curves using the gridpoints. We conclude with the following theorem:

» Theorem 8. Given m curves in R?, each of complezity at most n, and k,£ € N and some
0 < e <1, we can compute an (1 + €)-approximation to the (k,l)-center problem for the

d
discrete Fréchet distance in O (((Ck€)* +log(¢ +n)) - k€ - mn) time, with C = (6?‘/3) .

4 Exact algorithm for (k,(¢)-center for discrete Fréchet in 2D

We give an algorithm that solves the (k, £)-center problem for the discrete Fréchet distance
in 2D in polynomial time for fixed k and ¢. We first show how to solve the decision version.
The main idea of the algorithm for the decision version is based on the following observa-
tion: for a given r, we have min.cc dgr(c, g) < r for all g € G if and only if each vertex p of a
curve in C lies in the intersection of the disks of radius r around all vertices ¢ from curves in
G that p is matched with. Furthermore, it does not matter where the vertex p lies within the
intersection region. This means we can select one vertex for each region and exhaustively test
all sets with k curves of £ vertices that can be constructed by using only the selected vertices
to determine if there exists a set of curves C such that min.c¢ dgr(c,g) < r for all g € G.
The corresponding arrangement of circles has complexity O((nm)?), and can be computed
in that time [4], see Figure 3 for an example. We solve the optimisation version by performing
a binary search over the at most O((mn)?3) values of 7 at which the arrangement changes
combinatorially, which occurs only when some disks intersect at a single point.

» Theorem 9. Given a set of m curves G in the plane with at most n vertices each, we can
find a solution to the (k,{)-center problem in O((mn)****1kllog(mn)) time.
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