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Abstract
We investigate the problem of clustering a set T of n polygonal curves in Rd under the Fréchet
distance, with respect to the (k, l)-center and the (k, l)-median objective functions. These were
recently defined by Driemel et al. as an adaption of the well-known k-center and k-median
objectives with the restriction that the center-curves are composed of up to l line segments.
Driemel et al. already developed approximation-schemes for these objectives, for d = 1. Recently
Buchin et al. developed a constant-factor approximation algorithm for the (k, l)-center objective
for general d. Further they provide hardness results for that objective. We tie in with these results
by providing construction-techniques for small size ε-coresets for the (k, l)-center objective, if the
given curves are of well-behaved structure, and for the discrete k-median objective. That is, we
restrict the possible center-sets to all subsets of T of cardinality k and thus ignore the restriction
on the complexity of the center-curves.

1 Introduction

Clustering is a thoroughly studied topic that has a great impact in the field of data analysis.
Every problem in this topic has an intrinsic property: Given a collection P of n objects and
an integer k, one wants to divide P into k pieces, the so called clusters, such that the objects
in those clusters are some kind of related, cf. [4]. In many problem-formulations each cluster
is induced by a representative object. In our setting, these representatives are given by an
objective function over which one optimizes. There are three such objective functions that
are well-known: k-means, k-median and k-center. Initially these functions were defined in
the context of clustering points in the Euclidean space. There are also definitions of the
k-median and the k-center in the context of clustering points in general metric spaces.

In our setting, we are given a set T of n polygonal curves in Rd endowed with the
Fréchet distance and an integer k, as well as an integer l. Again we want to divide T into k
clusters, i.e., we are looking for a partition of T of cardinality k. Driemel et al. [2] already
studied this setting for d = 1. They introduce two restrictions, one on the input-curves
and one on the representatives, namely the input-curves are composed of up to m line
segments each and the representative curves of the clusters are composed of up to l line
segments each. The respective objective functions that enforce these restrictions are called
(k, l)-center and (k, l)-median. The authors develop quasi linear-time approximation-schemes
for these objectives. Recently, Buchin et al. [1] developed a 3-approximate algorithm for the
(k, l)-center objective for d ∈ N, as well as hardness-results, i.e., for d = 1 the (k, l)-center is
hard to approximate within a factor of 1.5− δ and for d > 1 within a factor of 2.25− δ, for
δ > 0.

Let f be one of the objective functions and C be a set of k representative curves. A set
S is an ε-coreset for f , if for all choices of C it holds that |f(T,C)− f(S,C)| ≤ ε · f(T,C).
Such a coreset is particularly important when clustetring queries shall be answered efficiently,
i.e., return the cost for a given center-set C. In this work we give an overview of our results on
small cardinality ε-coresets for the (k, l)-center objective and the discrete k-median objective,
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i.e., we restrict all possible center-sets to the subsets of T of cardinality k and therefore ignore
the restriction on the complexity of the center-curves. For a set of line segments we provide
ε-coresets of cardinality dependent on 1

ε2d , with respect to the (k, l)-center objective. For a
set of polygonal curves of complexity at most m each we provide ε-coresets of cardinality
dependent on lm

εdm +mm and the ratio δ
α , where α is the value of a c-approximate solution

and δ is the length of a longest line segment of any center-curve associated with that solution,
with respect to the (k, l)-center objective, but only if δ

α ∈ O( 2m
√
n). Finally, for a set of n

polygonal curves we provide ε-coresets of cardinality dependent on ln(n)
ε2 , with respect to the

discrete k-median objective. All results presented here stem from the Master thesis of the
second author [6] (available on arXiv) and all proofs can be found there.

Related Work To the best of our knowledge, clustering polygonal curves under the (k, l)-
center or the (k, l)-median objective has only been studied in [2] and [1], in that order. As
it was already mentioned, Driemel et al. introduce the (k, l)-center and the (k, l)-median
objective functions. Additionally, they develop (1 + ε)-approximation algorithms for these
objectives under the restriction that d = 1 and ε, k and l are fixed. The algorithms have
running-time Õ (n ·m). They also provide first hardness results for the (k, l)-center and the
(k, l)-median objectives. Finally, they prove that the Fréchet space (∆, dF ) (a formal definition
follows) has unbounded doubling dimension. The 3-approximation algorithm for the (k, l)-
center that is developed by Buchin et al. has running-timeO

(
km(nl log(l +m)) +m2 log(m)

)
.

Additional to this algorithm and the already mentioned hardness results they provide similar
hardness results for the discrete Fréchet distance and on the minimum enclosing ball problem
for polygonal curves under the Fréchet distance.

2 Preliminaries

IDefinition 2.1. A polygonal curve with vertices v1, . . . , vm ∈ Rd is defined as the parametric
curve connecting each contiguous pair of vertices by a line segment, which we call the edges
of the curve. The number of vertices is called complexity of the curve. By ∆m we denote the
equivalence class of polygonal curves of complexity at most m and by ∆ := ∪m∈N≥2∆m we
denote the equivalence class of all polygonal curves.

I Definition 2.2. Let F be the set of all continuous, injective and non-decreasing functions
f : [0, 1] → [0, 1] with f(0) = 0 and f(1) = 1. The Fréchet distance between polygonal
curves τ and σ is defined as dF (τ, σ) = inff∈F maxt∈[0,1] ‖τ(f(t))− σ(t)‖, where ‖ · ‖ is the
Euclidean norm.

I Definition 2.3. Given a set T of n polygonal curves of complexity at most m each
and two integers k and l, the (k, l)-center objective is to return the optimal cost of
minC⊂∆l,|C|=k maxτ∈T minc∈C dF (τ, c). The discrete k-median objective is to return the
optimal cost of minC⊂T,|C|=k

∑
τ∈T minc∈C dF (τ, c).

I Definition 2.4. Let T be a given set of n polygonal curves. Also, let f be an objective
function and C be a set of k cluster-representatives. A set S of polygonal curves is called ε-
coreset for T with respect to f , if for all possible choices of C it holds that |f(T,C)−f(S,C)| ≤
ε · f(T,C). S is called weighted ε-coreset if every s ∈ S is assigned a weight ws ∈ R, that
flows into the value of f .



Maike Buchin and Dennis Rohde 42:3

τ1(0)

p1

p2

p3

p4
p5

p6

τ1(1)

q1

q2

q3

q4
q5

q6

Figure 1 This is the construction used for Theorem 3.1, for d = 2. The curves are defined with
respect to the center points of the balls. The set T , which cannot be embedded into (Rd, dE), where
dE is the Euclidean distance, consists of τ(0)τ(1) (the common nearest neighbor), the line segments
piqi, for i ∈ {1, . . . , 6}, plus p1q2. The segment p1q2 breaks every possible isometric embedding.

3 What is the Difference between Points and Curves?

At first, we investigate whether we can transform the given polygonal curves into points in
the Euclidean space through an isometric embedding. Such a transformation would have
multiple benefits: When constructing an ε-coreset for any application, often one simply thins
out the input-set as much as possible. When such an embedding is available we could apply
existing construction-techniques, track which points are thrown out and then throw out all
curves that map to these points. If only the value of a clustering is needed this would give
us the opportunity to directly obtain the value through one of the numerous algorithms for
points in Rd. Unfortunately, such an isometric embedding does not exist for every possible
set of polygonal curves, even if we restrict ourselves to line segments.

I Theorem 3.1. For any d ∈ N, there exists a set of polygonal curves in Rd that cannot be
isometrically embedded into (Rd, dE), where dE is the Euclidean distance.

This result is achieved by proving that an isometric embedding, if existent, would violate
the d-dimensional kissing number, given certain sets of polygonal curves, cf. Fig. 1. The
d-dimensional kissing number is the maximum number of points in Rd that can share a
common nearest neighbor point (cf. [7]). We note that a similar result is implied due to
the fact that certain four-point graphs endowed with the shortest-path metric cannot be
embedded into Rd, for any d, while they can be embedded into (∆13, dF ) with ambient space
R, cf. [3]. Nevertheless, our result is stronger because it holds for (∆m, dF ), for any m ≥ 2.

4 Coresets for the (k, l)-center Objective

There is a common technique for constructing ε-coresets for the k-center objective, given
a set P of points in the Euclidean space: Run a c-approximate algorithm on P to obtain
a value α of the objective function. Let C be the center-set associated with this value. By
the structure of the objective function we have that P ⊆ ∪q∈C{p ∈ Rd | ‖p− q‖ ≤ α} =: E.
Additional, if α∗ is the optimal cost for P under the k-center objective, then α

c is a lower
bound on this number.
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Now around every q ∈ C we place a grid Gq of edge length 2 · α, thus E ⊆ ∪q∈CGq.
We set the edge-length of the cells of every grid to ε · 1√

d
· αc , thus we cannot move a point

contained in a cell more than ε · α∗ without leaving the cell. At last we go through every cell
of all Gq and if it contains more than one point from P we remove all but one of those from
P . The resulting set P ′ is an ε-coreset for the k-center objective of cardinality O

( 1
εd

)
.

This scheme can easily be adapted for a set T of polygonal curves, utilizing the 6-
approximation algorithm by Buchin et al. [1]. For line segments this is particularly easy:
Place such a grid around each end point of every center-curve. Again, by the structure of
the objective function the end points of the input-curves are contained in those grids. For a
curve τ call τ(0) its initial point and τ(1) its end point, further call the grid around τ(0)
the initial point grid and the grid around τ(1) the end point grid. Now, successively for
each center-curve, we go through every pair of a cell of the initial point grid and a cell of
the end point grid and remove all but one line segment from T that have their initial point,
respective end point in those cells. The resulting set T ′ is an ε-coreset for the (k, 2)-center
objective of cardinality O

( 1
ε2d

)
.

I Theorem 4.1. There exists an algorithm that, given a set of n line segments in d-
dimensional Euclidean space and a parameter ε ∈ (0, 1), computes an ε-coreset for the
(k, 2)-center objective of cardinality O

( 1
ε2d

)
, in time O

(
n
ε2d

)
.

For polygonal curves of complexity at least 3 this scheme has a flaw: The vertices of
the input-curves do not necessarily lie within distance α to any vertex of a center-curve.
Thus, we have to cover the whole center-curves with grids and therefore the cardinality of
the resulting ε-coreset depends on the ratio of roughly the length δ of a longest edge of
any center-curve and the value α of the c-approximate solution. For the ε-coreset to have
sublinear cardinality we have to check if δ

2α exceeds, say 2m
√
n, in advance. If this is the case

we are not able to provide an ε-coreset utilizing this technique. If this is not the case we now
have to consider any combination of m cells of the grids that cover a center-curve, therefore
the cardinality of the resulting ε-coreset is exponential in m.

I Theorem 4.2. There exists an algorithm that, given a set of n polygonal curves of
complexity at least 3 and at most m each, in d-dimensional Euclidean space and a parameter
ε ∈ (0, 1), computes an ε-coreset for the (k, l)-center objective of cardinality
O
(

23m ·
√
n · l

12d2m

εdm + 2mmm
)

in time

O
((

23m · n1.5 · l
12d2mm
εdm + 2mmm+1n

)
+ nm log(m) +m3 log(m)

)
, if δ

α ∈ O( 2m
√
n). Oth-

erwise, the algorithm fails and then has running-time O
(
nm log(m) +m3 log(m)

)
.

5 Coresets for the discrete k-median Objective

For the (discrete) k-median objective we use standard-techniques for approximating sums.
In [5] Langberg and Schulman define a sensitivity sampling framework and show how it can
be used to approximate the value of sum-based clustering objectives such as the k-median
or the k-means. The proofs are formulated with respect to point-sets from the Euclidean
space and some arbitrary norm. Nevertheless, they also work for polygonal curves under the
Fréchet distance.

However, to the best of our knowledge, there are no results on the VC dimension of the
Fréchet space (∆, dF ) yet1. Therefore, to bound the probability that a sample is an ε-coreset,

1 Though there are results to appear at SoCG ’19 by Driemel et al.
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Figure 2 Exemplary grid-cover that is used for the algorithm of Theorem 4.2, for general polygonal
curves and d = 2. A center-curve is depicted in green with cubes in black and associated grids in
light blue. A curve with Fréchet distance less than ĉost(T ) := α is also depicted. It can be observed
that the vertices of this curve lie in at least one cell of a grid.

in particular that it can be used to approximate the value of the objective function for all
possible center-sets, we restricted ourselves to the discrete k-median objective.

The sensitivity sampling framework works as follows: We are given a set T of n polygonal
curves and run a 6-approximation algorithm to obtain a value α on the k-median objective
function and the associated center-set C. The approximation algorithm we use is a local-
search heuristic that uses a solution from the 6-approximation algorithm for the (k, l)-center
objective by Buchin et al. as initial guess and thus has running-time O(n2m2 log(m)). We
use α and C to assign every τ ∈ T a sensitivity value sτ . These sensitivities and the total
sensitivity S :=

∑
τ∈T st suffice to build a probability distribution ψ : T → [0, 1], such that a

sample of cardinality `(ε, n) ∈ Ω
(

ln(n)
ε2

)
from T with respect to ψ is a weighted ε-coreset

for the discrete k-median objective with probability at least 2
3 , where every member of the

sample is weighted by n
`(ε,n) . This is due to the fact that curves which have high impact

on the value of the objective function for at least one center-set are sampled with higher
probability, i.e., the probability to sample a curve is proportional to its “importance”.

I Theorem 5.1. There exists an algorithm that, given a set of n polygonal curves of complexity
at most m each, and a parameter ε ∈ (0, 1), computes an ε-coreset for the discrete k-median
objective of cardinality O

(
ln(n)
ε2

)
in time O

(
n2 ·m2 log(m) + ln2(n)

ε2

)
, with probability at

least 2
3 .

References

1 Kevin Buchin, Anne Driemel, Joachim Gudmundsson, Michael Horton, Irina Kostitsyna,
Maarten Löffler, and Martijn Struijs. Approximating (k, `)-center clustering for curves.

EuroCG’19



42:6 REFERENCES

In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 2922–2938. 10.1137/1.9781611975482.181.

2 Anne Driemel, Amer Krivošija, and Christian Sohler. Clustering Time Series Under the
Fréchet Distance. In Proceedings of the Twenty-seventh Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 766–785. Society for Industrial and Applied Mathematics,
2016. ISBN 978-1-611974-33-1.

3 Piotr Indyk, Piotr Indyk, and Jiri Matousek. Low-Distortion Embeddings of Finite Metric
Spaces. Handbook of Discrete and Computational Geometry, pages 177—-196, 2004.

4 Anil K. Jain. Data Clustering: 50 Years Beyond k-means. Pattern Recognition Letters, 31
(8):651–666, 2010. ISSN 0167-8655. 10.1016/j.patrec.2009.09.011.

5 Michael Langberg and Leonard J. Schulman. Universal Epsilon-Approximators for Integrals.
In Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 598–607, 2010. 10.1137/1.9781611973075.50.

6 Dennis Rohde. Coresets for (k, l)-Clustering under the Fréchet Distance. Master’s thesis,
TU Dortmund University, December 2018.

7 Kenneth Zeger and Allen Gersho. Number of Nearest Neighbors in a Euclidean Code.
IEEE Transactions on Information Theory, 40(5):1647–1649, 1994. ISSN 0018-9448.
10.1109/18.333884.

http://dx.doi.org/10.1137/1.9781611975482.181
http://dx.doi.org/10.1016/j.patrec.2009.09.011
http://dx.doi.org/10.1137/1.9781611973075.50
http://dx.doi.org/10.1109/18.333884

	Introduction
	Preliminaries
	What is the Difference between Points and Curves?
	Coresets for the (k,l)-center Objective
	Coresets for the discrete k-median Objective

