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1 Introduction

There exist many applications that desire an algorithm to be stable: small changes in the
input lead to small changes in the output. Stability is especially important when analyzing or
visualizing time-varying data. A sudden change to the input renders an unstable visualization
completely ineffective, as it will be hard or impossible to follow the temporal patterns. It is
therefore of interest to develop stable algorithms that deal with such changes in the input in
an elegant way, so that the output does not lose its effectiveness over time.

Shape descriptors are simplified representations of (complex) shapes and can be used to
effectively summarize data, even as it changes over time. They play an important role in
fields that rely on shape analysis, like computer vision (shape recognition) [4, 6, 29], computer
graphics (bounding boxes for broad-phase collision detection) [1, 12, 16, 24], medical imaging
(diagnosis or surgical planning) [7, 13, 15, 30], and machine learning (shape classification)
[22, 26, 27, 28]. In this abstract we focus on a shape descriptor that captures the overall
orientation of the underlying shape (represented by a point cloud). Specifically, we study
the oriented bounding box (obb): an oriented bounding box that contains all points (see
Figure 1 left). We say that oriented bounding boxes of smaller area are of better quality.
Unfortunately, oriented bounding boxes of optimal quality are unstable and may have discrete
“flips” in their orientation, even for continuously moving point sets (Figure 1 right). Hence,
we want to sacrifice some quality for stability.

Problem description. The main goal of this abstract is to formally analyze the trade-off
between quality and stability for an obb. Our input consists of a set of n moving points
P = P (t) = {p1(t), . . . , pn(t)} in 2 dimensions, where each pi(t) is a function pi : [0, T ]→ R2.
We assume that, at each time t, not all points are at the same position. We further assume
that each point moves with at most unit speed, that is, ‖p′i(t)‖ ≤ 1 for all times t. As
output we want to compute an obb containing all the input points. The oriented bounding
box essentially describes an optimization function, which captures the quality of the shape
descriptor, that is, how well the descriptor represents (the orientation of) the underlying
shape. The optimization function is the area of the bounding box and it can be minimized
over all orientations. That is, we consider the optimization of function fobb(α, P ) which
represents the area of the smallest bounding box with orientation α on point set P .

We can now also consider bounding boxes of suboptimal quality, with slightly larger
area than the smallest one. This allows us to make a trade-off between quality and other
desirable properties of obb, such as its stability. Since the optimization function optimizes
over orientations, the output consists of an orientation α(t) for every time step t ∈ [0, T ].
This orientation is an element of the real projective line RP1, but we represent α(t) by a unit
vector in R2 and implicitly identify opposite vectors, which is equivalent. Furthermore, we
assume that the output α(t) is computed for all real values t ∈ [0, T ].
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Figure 1 Examples of obb on different point sets. On the right two optimal boxes exist.

For obb we typically compute more than just an orientation. However, it is easy to see
that the stability of obb is mostly affected by the optimal orientation. We therefore ignore
other aspects of the shape descriptor to analyze the stability, and assume that these aspects
are chosen optimally for the given orientation without any cost with regard to the stability.

Stability analysis. To analyze the stability of obb we use the framework introduced by
Meulemans et al. [18]. This framework defines various stability measures, one of which is the
Lipschitz stability. An algorithm is K-Lipschitz stable if its output changes at most K units,
when the input points move one unit. We study the Lipschitz stability of obb and slightly
reformulate the definition by restricting it to our setting. Let A be an algorithm that takes
a point set as input and computes an orientation. The definition of the Lipschitz stability
ratio depends on the metrics (distance functions) on the input and output space. This is
straightforward: the input space is R2n and the output space is topologically equivalent to
S1, hence we can use the Euclidean and circle metric respectively. We define the K-Lipschitz
stability ratio of obb as follows:

ρLS(obb,K) = inf
A

sup
P (t)

max
t∈[0,T ]

fobb(A(P (t)), P (t))
minγ fobb(γ, P (t)) (1)

where the infimum is taken over all algorithms A for which A(P (t)) is K-Lipschitz. Thus,
the difference in orientation or angle is at most K radians per unit of change in the input.
Informally, ρLS is the best approximation ratio any algorithm can achieve for a given K.

Kinetic algorithms. Algorithms for kinetic (moving) input can adhere to different models,
which may influence the results of the stability analysis. We focus on state-aware algorithms,
which map input I(t) on time t to output, but also maintain a state S (typically the output at
the previous time step) over time. This contrasts stateless and clairvoyant algorithms, which
depend only on the input I(t) at a particular time or the complete function I(t) respectively.

Interestingly, for stateless algorithms the K-Lipschitz stability ratio is unbounded for any
constant K. This can be argued topologically by realizing that a stable stateless algorithm
defines a continuous map between the input and output space, and we can show that an
algorithm with bounded approximation ratio must define a map between two subspaces that
are not homotopic. We therefore move our attention to state-aware algorithms.

Our results. A state-aware algorithm can enforce continuity by keeping the output at the
previous time step as the state. We define a chasing algorithm, which moves the output of
the previous time step with maximum allowed speed towards the optimal solution at the
current time. In the remainder of this abstract we analyze the quality and stability of such
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an algorithm: Section 2.1 explains how stability is ensured, while Section 2.2 shows how the
quality is affected.

Related work. Computing obb for static point sets is a classic problem in computational
geometry. In two dimensions, one side of the optimal box aligns with a side of the convex hull
and it can be computed in linear time after finding the convex hull [11, 23]; a similar property
holds in three dimensions, allowing a cubic-time algorithm [19]. The relevance of bounding
boxes in 3D as a component of other algorithms led to efficient approximation algorithms,
such as a (1 + ε)-approximation algorithm in O(n+ 1/ε4.5) time or an easier algorithm with
running time O(n logn+ n/ε3) [2]. Bounding boxes find applications in tree structures for
spatial indexing [3, 14, 20, 21] and in collision detection and ray tracing [1, 12, 24]. Results
on the stability of facility location problems [5, 9, 10, 8] and the medial axis [17] all predate
a framework for analyzing stability introduced by Meulemans et al. [18]. In [18] the authors
apply the framework to maintaining the Euclidean minimum spanning tree on a set of moving
points. They show a bounded topological stability for various topologies on the space of
spanning trees, and that the Lipschitz stability is at most linear, but also at least linear if the
allowed speed for the changes in the tree is too low. Bounds on the topological stability of a
problem essentially are lower bounds on its Lipschitz stability. Van der Hoog et al. study
the topological stability of the k-center problem [25], showing upper and lower bounds on
the stability ratio for various measures. They also provide an algorithm to determine the
best ratio attainable for a given set of moving points.

2 Lipschitz stability of a state-aware algorithm

To derive meaningful bounds on the Lipschitz stability ratio, the relation between dis-
tances/speeds in input and output space should be scale-invariant [18]. This is currently
not the case: if we scale the coordinates of the points, then the distances in the input space
change accordingly, but the distances in the output space (between orientations) do not. To
remedy this problem, we require that diameter D of P (t) is at least 1 for every time t.

We use a chasing algorithm as introduced in Section 1. However, instead of chasing the
orientation of obb, we chase the orientation of a diametrical pair. Although chasing the
optimal shape descriptor would be better in general, chasing a diametrical pair is easier to
analyze and sufficient to obtain a bounded Lipschitz stability ratio for obb.

2.1 Chasing the diametrical pair
We denote the orientation of the diametrical pair as α = α(t) and the diameter as D =
D(t) ≥ 1. Furthermore, let W = W (t) be the width of the thinnest strip with orientation
α(t) covering all points in P (t), and let z = z(t) = W (t)/D(t) be the aspect ratio of the
diametric box with orientation α(t). We will generally omit the dependence on t if t is clear
from the context. Finally, we have a chasing algorithm that has orientation β = β(t) and the
difference in orientation is at most a constant K, when the input has moved one unit.

Approach. The main goal is to keep β as close to α as possible, specifically within a
sufficiently small interval around α. The challenge lies with the discrete flips of α. We
must argue that, although flips can happen instantaneously, they cannot happen often
within a short time-span – otherwise we can never keep β close to α with a bounded speed.
Furthermore, the size of the interval must depend on the aspect ratio z, since if z = 0, the
interval around α must have zero size as well to guarantee a bounded approximation ratio.
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α(t)

β(t)

α(t+ ε)

Figure 2 Interval I at time t (outer) and time t+ε (inner). The safe/danger zones and orientations
are indicated in blue, red and green respectively. Diametrical pairs are connected by dashed lines.

For the analysis we introduce three functions depending on z: T (z), H(z), and J(z).
Function H(z) defines an interval [α−H(z), α+H(z)] called the safe zone. We aim to show
that, if β leaves the safe zone at some time t, it must return to the safe zone within the time
interval (t, t+ T (z)]. We also define a larger interval I = [α−H(z)− J(z), α+H(z) + J(z)].
We refer to the parts of I outside of the safe zone as the danger zone (see Figure 2). Although
β may momentarily end up in the danger zone due to discontinuous changes, it must quickly
find its way back to the safe zone. We aim to guarantee that β stays within I at all times.
Let E = E(t) refer to an endpoint of I. We call J(z) the jumping distance and say it is valid
if J(z) upper bounds how far E can “jump” in a single time step. Note that J(z) is defined
recursively through E, so we need to be careful to choose the right function for J(z). For the
other functions we choose T (z) = z/4 and H(z) = c arcsin(z) for a constant c (chosen later).

Changes in orientation and aspect ratio. To verify that the chosen functions T (z) andH(z)
satisfy the intended requirements, and to define the function J(z), we need to bound how much
α and z can change over a time period of length ∆t. We refer to these bounds as ∆α(z,∆t)
and ∆z(z,∆t), respectively. Note that, since the diameter can change discontinuously, we
generally have that ∆α(z, 0) > 0 and ∆z(z, 0) > 0.

I Lemma 2.1. ∆α(z,∆t) ≤ arcsin(z + ∆t(1 + z)) for ∆t ≤ (1− z)/(1 + z).

I Lemma 2.2. ∆z(z,∆t) ≤ z − sin( 1
2 arcsin(z))−2∆t

1+2∆t for ∆t ≤ sin( 1
2 arcsin(z))/2.

Jumping distance. Using Lemma 2.1 and Lemma 2.2 we can derive a valid function for
J(z). Recall that we require that J(z) is at least the amount E can move in ∆t = 0 time.

I Lemma 2.3. J(z) = (c+ 2) arcsin(z) is a valid jumping distance function.

Proof. By Lemma 2.1 and Lemma 2.2 we get that ∆E(z, 0) ≤ ∆α(z, 0) + H(z) −H(z −
∆z(z, 0)) + J(z) − J(z − ∆z(z, 0)). Since ∆α(z, 0) ≤ arcsin(z) and ∆z(z, 0) ≤ z −
sin( 1

2 arcsin(z)), we get after simplification that ∆E(z, 0) ≤ (1 + c/2) arcsin(z) + J(z) −
J(sin( 1

2 arcsin(z))). Since we require that J(z) ≥ ∆E(z, 0), it suffices to show that the
following holds: J(sin( 1

2 arcsin(z))) ≥ (1 + c/2) arcsin(z). Using the provided function, we
get that J(sin( 1

2 arcsin(z))) = (c+ 2) arcsin(z)/2 as required. J

I Corollary 2.4. If β is in I, then |α− β| ≤ (2c+ 2) arcsin(z).
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Figure 3 Illustrations supporting proof of Lemma 2.7.

Bounding the speed. To show that the orientation β stays within the interval I, we argue
that over a time period of T (z) we can rotate β at least as far as E. As the endpoint of the
safe zone moves at most as fast as E, this implies that if β leaves the safe zone at time t, it
returns to it in the time period (t, t+ T (z)]. Thus we require that KT (z) ≥ ∆E(z, T (z)).
We need to keep up only when the safe zone does not span all orientations, that is, the above
inequality must hold only when H(z) ≤ π/2 or z ≤ sin( π2c ). For the following speed bound
we choose a specific value c = 3. Hence we only need to chase α when z ≤ sin(π6 ) = 1

2 .

I Lemma 2.5. If K ≥ 40, then |β(t)− α(t)| ≤ 8 arcsin(z) (using c = 3) for all times t.

2.2 Lipschitz stability ratio
What remains is to analyze the approximation ratio of the chasing algorithm for obb.
Corollary 2.4 implies that the orientation β of the chasing algorithm is at most an angle
(2c+ 2) arcsin(z) away from the orientation of a diametrical pair of points.

I Lemma 2.6. sin(λ arcsin(x)) ≤ λx for λ ≥ 1 and 0 ≤ x ≤ 1:

I Lemma 2.7. If |β − α| ≤ (2c+ 2) arcsin(z), then fobb(β, P ) ≤ (4c+ 6) minx fobb(x, P ).

Proof. Assume that at some time t we have a diametric box with diameter D and aspect
ratio z, and let (p1, p2) be a diametrical pair. The smallest obb must contain p1 and p2 and
must hit the sides of the diametric box at, say, q1 and q2 (see Figure 3). Since the smallest
obb must contain the triangles formed by {p1, p2, q1} and {p1, p2, q2}, the area of this box
must be at least the sum of the areas of these two triangles, which is D2z/2.

Now consider the box of the chasing algorithm, where ∆α = |β − α| ≤ (2c+ 2) arcsin(z).
We assume that the major axis of the box has length D, which is worst possible. Let the
minor axis of the box be bounded by two points q1 and q2, where the angle between the line
through q1 and q2 and the line through the diametrical pair is γ. Note that the distance
between q1 and q2 is bounded by min(D, zD/ sin(γ)). The angle between the minor axis of
the box and the line through q1 and q2 is π/2−γ−∆α. Thus, the length of the minor axis is
min(D, zD/ sin(γ)) cos(π/2− γ −∆α) = min(D sin(γ + ∆α), zD sin(γ + ∆α)/ sin(γ)). Since
the function sin(γ+∆α)/ sin(γ) is decreasing in γ, we attain the maximum when z/ sin(γ) = 1
or γ = arcsin(z). Hence, the area of this box is at most D2 sin((2c+ 3) arcsin(z)), which is
at most D2z(2c+ 3) by Lemma 2.6. Thus, fobb(β, P ) ≤ (4c+ 6)minxfobb(x, P ). J

By combining Lemmata 2.5 and 2.7, we obtain this bound on the Lipschitz stability of obb.

I Theorem 2.8. The Lipschitz stability ratio for obb is bounded by ρLS(obb, 40) ≤ 18.
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