
Kinetic Volume-Based Persistence for 1D Terrains
Tim Ophelders1, Willem Sonke∗2, Bettina Speckmann†2, and
Kevin Verbeek‡2

1 Department of Computational Mathematics, Science and Engineering,
Michigan State University, USA
ophelder@egr.msu.edu

2 Department of Mathematics and Computer Science, TU Eindhoven,
The Netherlands
[w.m.sonke|b.speckmann|k.a.b.verbeek]@tue.nl

1 Introduction

The evolution of the channel network of braided rivers is an important topic in geomorphology.
The merges and splits of braided river channels evolve over time under the influence of water
pressure and sediment transport. Kleinhans et al. [6] recently presented algorithms to extract
a (static) network of significant channels from the elevation data of a river bed; this method
is already used in geomorphological studies [5, 8]. The challenge is to identify significant
channels from the river bed, since measurement errors and small variations in the terrain
generally cause a multitude of possible channels. Two channels can be considered similar if
the volume of terrain between the channels is small, modelling the fact that a small volume of
sediment can easily be eroded by water flow, merging the two channels into one. A network
of significant channels consists of channels which are sufficiently dissimilar.

To analyze the evolution of significant channels over time we could kinetically maintain
the network of significant channels computed by the method of Kleinhans et al. [6]. However,
these networks are not stable over time and also prohibitively expensive to compute. We
hence propose a simplified model which uses a volume-simplified terrain. Specifically, we
prune topological features of the terrain (minima and maxima) that can be eliminated by
removing only a small amount of volume. The idea is that the remaining topological features
separate significant channels.

Pruning of the terrain based on the volume of the removed features resembles terrain
simplification based on (height) persistence. The notion of topological persistence was
introduced by Edelsbrunner et al. [4]. Persistence can be defined via measures other than
the vertical distance between points. Carr et al. [3] describe a method to simplify contour
trees (which capture the topological structure of a terrain) using so-called local geometric
measures, such as (in 2D terrains) the line length of the contour, the area enclosed by the
contour, or the volume of the enclosed region. This last type of persistence is exactly the
one we use in this paper and we therefore refer to our simplified terrain as volume-persistent.

Our goal is to maintain a volume-persistent terrain over time, which is closely related to
maintaining its topological structure over time, as represented, for example, by its contour
tree or its split tree. Agarwal et al. [1] show how to maintain a 2D contour tree kinetically.
They also argue that they can maintain height persistence over time. However, maintaining
volume-persistence is much more challenging, because we have to detect the events that
occur when a pruned part of the terrain attains a certain threshold volume. The complexity

∗ Supported by the Netherlands Organisation for Scientific Research (NWO); 639.023.208.
† Partially supported by the Netherlands Organisation for Scientific Research (NWO); 639.023.208.
‡ Supported by the Netherlands Organisation for Scientific Research (NWO); 639.021.541.

35th European Workshop on Computational Geometry, Utrecht, The Netherlands, March 18–20, 2019.
This is an extended abstract of a presentation given at EuroCG’19. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.



38:2 Kinetic Volume-Based Persistence for 1D Terrains

u

v

w2
w1

u

v

w2
w1

u

v

w2
w1

Figure 1 Pruning a terrain at the height of a saddle point v (split tree shown next to the terrain).

of the associated certificates can be high, since the volumes can be determined by linearly
many vertices. Furthermore, the volume above a particular contour in the terrain is not
continuous: when two contours merge the associated volumes are summed, whereas the
associated height is simply the maximum of the two heights. Hence the volume-based pruning
can be “stuck” at a critical point (see Fig. 1: pruning just below the saddle point requires a
much higher volume-threshold than pruning exactly at the saddle point). Since these issues
already manifest themselves for 1D terrains, we restrict ourselves to this setting.

Preliminaries. Let T be a 1D terrain with n vertices, of which each vertex v has a fixed
x-coordinate xv and height hv that changes linearly over time according to a known flight
plan: hv(t) = av t+ bv. Between vertices, the height is interpolated linearly; h(x, t) denotes
the height of T at x on time t. At time t, the superlevel set of T at height h is the set of
points in T with h(x, t) ≥ h. A superlevel set may consist of several connected components.
For h = −∞, the superlevel set spans the entire terrain. If we continuously increase h, at
certain moments topological changes happen to the superlevel set. The split tree S of T
represents those changes: a component splitting is represented by an internal vertex, and
a component disappearing is represented by a leaf [2] (see Fig. 2a). We consider S to be
rooted at the vertex at h = −∞, so every edge is directed upwards. Let e = (u, v) be a split
tree edge. Then the parent edge p(e) of e is the incoming edge of u, and the child edges of e
are the outgoing edges of v. The subtree rooted at e is the subtree rooted at v, plus e itself.

To prune the terrain we cut off a single split component at a particular height h (see
Fig. 2b). We can equivalently view this operation as pruning the split tree: we identify some
point on an edge of the split tree, and remove the entire subtree above it. If we prune at the
height of a minimum v, then we need to specify which of the outgoing edges of v we want to
prune. We define A(e, h) as the area of terrain that is cut off if we prune edge e at height h.
Let A ∈ R be some (fixed) positive area threshold. We define the area-persistent terrain

(a)

(b)

Figure 2 Area-simplifying a 1D terrain: (a) before, and (b) after.



T. Ophelders, W. Sonke, B. Speckmann and K. Verbeek 38:3

as the terrain left after pruning all edges e in S at height h, whenever A(e, h) ≤ A. In the
resulting terrain, all pieces that are cut off have area at most A.

Results. We describe a KDS that maintains the pruned split tree of an area-persistent
terrain under linear vertex motion. That is, for each edge e = (u, v), we maintain if A(e, hu)
is smaller or larger than A. This KDS is compact, responsive, local, and efficient.

2 A KDS for maintaining an area-persistent 1D terrain

We adapt the KDS for 2D contour trees by Agarwal et al. [1] to 1D split trees. This KDS uses
four types of events: shift, birth, death, and interchange events, which can all be handled by
changing the split tree. We maintain the split tree S as a link–cut tree [7]. Next, we add
area certificates to detect so-called area events when a pruning boundary moves from one
split tree edge to the other.

We define Ae := A(e, hu), so Ae is the area that is removed when we prune away the
subtree rooted at e from S, and we write Ae(t) to denote Ae at time t. If Ae(t) > A, we say
that e is significant at time t, otherwise we say that e is insignificant. We call a certificate
Ae > A (Ae < A) an upper (lower) area certificate for edge e (see Fig. 3a).

If an edge e is insignificant, then all edges in the subtree rooted at e are insignificant;
similarly, if e is significant, then all ancestor edges of e are significant. Therefore we do not
need to store area certificates for all edges in S: we store a lower area certificate for e only if
p(e) is significant, and an upper area certificate for e only if all children of e are insignificant
(see Fig. 3b, only stored area certificates are shown). On each root-to-leaf path through S,
at most two area certificates are stored: one upper and one lower certificate.

(a) (b)

Figure 3 Two area-persistent split trees with area certificates: (a) the terrain from Fig. 2b, and
(b) a more complicated terrain. ( and denote upper and lower area certificates, respectively.)

Computing areas. We use an additional data structure that is based on the flight plans of
the vertices and that needs to be updated only when a flight plan changes. Using this data
structure, given two arbitrary terrain vertices v and w and some time t, we want to be able
to compute

∫ xw

xv
h(x, t)dx in O(logn) time. If e = (p, q) is a terrain edge, then∫ xq

xp

h(x, t)dx = 1
2 (xq − xp)(apt+ bp + aqt+ bq)

= 1
2 (xq − xp)(ap + aq)︸ ︷︷ ︸

=: ae

t+ 1
2 (xq − xp)(bp + bq)︸ ︷︷ ︸

=: be

.

EuroCG’19



38:4 Kinetic Volume-Based Persistence for 1D Terrains

Then for arbitrary terrain vertices v and w,∫ xw

xv

h(x, t)dx =
∑

e=(p,q)

∫ xq

xp

h(x, t)dx =
(∑

e

ae

)
t+
∑

e

be,

where the summations range over all terrain edges between v and w. To evaluate
∑

e ae and∑
e be efficiently, we compute ae and be for each terrain edge e and store them in a balanced

binary tree R, augmented with sums of subtrees, using O(n) preprocessing time. We then
support O(logn) time queries for the sum of ae or be values for all edges e between two query
vertices v and w, so we can compute

∫ xw

xv
h(x, t) in O(logn) time for any v, w and t.

Detecting area events. We need to answer the following question: Given a split tree edge
e = (u, v) at time t0, what is the next time tevent at which Ae(tevent) = A? We assume
without loss of generality that e = (u, v) is a right-going edge in S. Let xray(t) be the
x-coordinate of the first point on the terrain to the right of u where h(x, t) = hu(t). That is,
xray(t) is the point where a horizontal ray from u to the right stabs the terrain at time t.

We first assume that we know the edge eevent = (p, q) that xray(tevent) lies on, that is,
the first edge intersected by the ray at the time that the area certificate fails (see Fig. 4a).
In this case, we can compute the exact failure time tevent as follows. Ae(t) is the sum of the
areas induced by the terrain edges between u and p, which are fully above the ray, and the
area of the triangle between the ray and (p, q) (see Fig. 4b). This implies that Ae(tevent) = A

is a quadratic equation with a closed-form solution, and can therefore be solved exactly. In
other words, given eevent, we can compute tevent in O(logn) time.

p

qu
xray(tevent)

v

u

v

(a)

h(t)

w

(b)

Figure 4 Computing the area Ae(tevent) (shaded in blue).

Finding the stabbed chain. In the following we consider monotone chains of the terrain.
We call the chain that contains xray(t0) the stabbed chain of edge e = (u, v) and describe an
algorithm Stabbed-Chain that finds its lower endpoint m (see Fig. 5).

I Lemma 1. Let e = (u, v) be a right-going edge in S, and let (m,m′) be the last left-going
edge on the path π from the root to u. Then m is the lower endpoint of the stabbed chain of e.

u

m

v

m

u
v

m′m′
π

Figure 5 Finding the lower endpoint m of the stabbed chain (red) by traversing the split tree.



T. Ophelders, W. Sonke, B. Speckmann and K. Verbeek 38:5

Since path π may have linear length we cannot traverse it to search for m. Instead we query
the link–cut tree for a binary search tree containing all vertices on π (this is an Expose
query). In this tree we find the rightmost vertex m′ whose incoming edge is left-going in S,
and return the parent m of m′. For this we augment the link–cut tree: we store for each edge
whether it is left- or right-going. This results in a O(logn) running time for Stabbed-Chain.

Finding eevent. At current time t0 we first use Stabbed-Chain to find vertex m. The
predecessor of m in the split tree is the maximum M of the stabbed chain. We binary search
between M and m for the edge that xray(t0) lies on and then find the exact value for xray(t0).
Consider the point s on the terrain at x-coordinate xray(t0). We distinguish three cases
based on how s moves over time. In the simplest case, s moves at the same speed as u and
hence xray is constant, so we simply return the edge xray(t0) lies on. Otherwise, s may be
moving upwards or downwards relative to u. If s moves upwards, xray is strictly increasing
over time; if s moves downwards, xray is strictly decreasing. In the following we assume that
xray is strictly increasing (see Fig. 6); the other case is symmetric.

M

u

m

xray(t1)

xray(t0)
s

Figure 6 If s moves upwards, then xray is strictly increasing. Terrain at t0 in black; terrain at
later times in gray. The red arrows indicate how the vertices move relative to u.

We then find the time t1 at which the next shift, birth or death event occurs involving
vertices between u and m. (This can be done efficiently using a 1D range tree storing all
such events, with their x-coordinate as the key and their failure time as the value.) Since
therefore no events occur between t0 and t1, xray(t1) lies in the same chain as xray(t0).
Therefore we can compute xray(t1) in the same way we computed xray(t0). Given some
x ∈ [xray(t0), xray(t1)], let tray(x) be the time at which the point at x hits the ray. Being the
inverse of xray, tray is also strictly increasing.

I Lemma 2. The function A′
e(x) := Ae(tray(x)) is unimodal within [xray(t0), xray(t1)]: there

exists an xfixed such that A′
e(x) is strictly descending for x ∈ [xray(t0), xfixed) and strictly

increasing for x ∈ (xfixed, xray(t1)].

Proof. We study the derivative dA′
e/dx by considering the following extension of A′

e(x):

A′
e(x, t) =

∫ x

u

(
h(x′, t)− hu(t)

)
dx′.

A′
e(x, t) represents the area cut off by a horizontal ray to the right starting from vertex u,

until x-coordinate x, so A′
e(x) = A′

e(x, tray(x)). We set t = tray(x) and compute

dA′
e

dx = ∂A′
e

∂t

dt
dx + ∂A′

e

∂x
= ∂A′

e

∂t

dt
dx.

EuroCG’19



38:6 Kinetic Volume-Based Persistence for 1D Terrains

t

x

t1

t0

tray

xfixed

∂A′
e

∂t > 0
∂A′

e

∂t < 0

xray(t0) xray(t1)

Figure 7 Sketch of the function tray drawn in the (x, t)-plane.

The last equality follows because ∂A′
e/∂x = 0, as for x = xray(t) by definition h(x, t) = hu(t).

Because tray is increasing, dt/dx > 0, so dA′
e/dx has the same sign as ∂A′

e/∂t.
Let xfixed be the x-coordinate within [xray(t0), xray(t1)] such that A′

e(xfixed, t) is constant
in t, if such a coordinate exists. The average terrain height on [xu, xfixed] is hence constant,
and all terrain points in [xfixed, xray(t1)] are moving upwards relative to u. Therefore, for
x ∈ (xfixed, xray(t1)], the average terrain height on [xu, x] is growing, so ∂A′

e/∂t > 0 (see
Fig. 7). Similarly, within [xray(t0), xfixed), ∂A′

e/∂t < 0. If no xfixed exists, then ∂A′
e/dt > 0

or ∂Ae/dt < 0 throughout [xray(t0), xray(t1)]. Hence, A′
e(x) is unimodal. J

First we find xfixed by binary searching within the range [xray(t0), xray(t1)], using tree R.
Then, we compute A′

e(xray(t0)) and A′
e(xray(t1)) to determine whether eevent lies within

[xray(t0), xfixed) or (xfixed, xray(t1)], and do a binary search (again using R) on that range to
find eevent. The binary search takes O(logn) steps, each taking constant time, so it takes
O(logn) time to compute A′

e(x).

death

birth

death

birth

e

e

v1 v2

v1 v2

vv

v v

death

birth

e

v1 v2

vv

death

birth

e

v1 v2

v v

e

shrink

grow

e

e

shrink

grow

e

u

u u

u

Figure 8 Handling area events (left) and birth / death events (right).



T. Ophelders, W. Sonke, B. Speckmann and K. Verbeek 38:7

Event handling. There are two complementary types of area events: firstly, Ae < A may
fail (a grow event), and secondly, Ae > A may fail (a shrink event). Both of them can be
handled by inserting and removing area certificates (see the left of Fig. 8). Shift, birth, death,
and interchange events are handled like in the KDS from Agarwal et al., but some additional
actions are required to ensure that the area certificates are updated (see the right of Fig. 8).

Analysis. The KDS is still compact, responsive, local, and efficient. In particular, each
vertex is involved in a constant number of area certificates. Indeed, a vertex is involved in
the area certificate of a split tree edge e = (u, v) if it lies between u and m (see Fig. 5). A
chain is stabbed by only one upper area certificate, since any rays stabbing the same chain
need to originate from vertices on the same root-to-leaf path in the split tree (by Lemma 1);
as we store upper area certificates for an edge only if all its children are insignificant, this
path can contain only one upper area certificate. Therefore, each vertex in the interior of the
chain is involved in at most one upper area certificate and by similar reasoning, at most one
lower area certificate. A minimum is part of two chains and hence involved in at most two
upper and two lower area certificates. This implies that the locality is O(1).

References
1 Pankaj Agarwal, Thomal Mølhave, Morten Revsbæk, Issam Safa, Yusu Wang, and Jung-

woo Yang. Maintaining contour trees of dynamic terrains. In Proc. 31st International
Symposium on Computational Geometry (SoCG), pages 796–811, 2015.

2 Hamish Carr, Jack Snoeyink, and Ulrike Axen. Computing contour trees in all dimensions.
In Proc. 11th ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 918–926,
2000.

3 Hamish Carr, Jack Snoeyink, and Michiel van de Panne. Simplifying flexible isosurfaces
using local geometric measures. In Proc. 15th IEEE Visualization Conference (VIS), pages
497–504, 2004.

4 Herbert Edelsbrunner, David Letscher, and Afra Zomorodian. Topological persistence and
simplification. Discrete Computational Geometry, 28:511–533, 2002.

5 Matthew Hiatt, Willem Sonke, Elisabeth Addink, Wout van Dijk, Marc van Kreveld, Tim
Ophelders, Kevin Verbeek, Joyce Vlaming, Bettina Speckmann, and Maarten Kleinhans.
Geometry and topology of estuary and braided river channel networks extracted from
topographic data. Abstract EP32A-08 presented at 2018 Fall Meeting, AGU, Washington,
D.C., 10-14 Dec.

6 Maarten Kleinhans, Marc van Kreveld, Tim Ophelders, Willem Sonke, Bettina Speckmann,
and Kevin Verbeek. Computing representative networks for braided rivers. In Proc. 33rd
International Symposium on Computational Geometry (SoCG), pages 48:1–48:16, 2017.

7 Daniel Sleator and Robert Tarjan. A data structure for dynamic trees. Journal of Computer
and System Sciences, 26:362–391, 1983.

8 Wout van Dijk, Jasper Leuven, Jana Cox, Jelmer Cleveringa, Marcel Taal, Matthew Hiatt,
Willem Sonke, Kevin Verbeek, Bettina Speckmann, and Maarten Kleinhans. The effects
of dredging and disposal activity on the resilience of estuary morphodynamics. Abstract
EP23C-2305 presented at 2018 Fall Meeting, AGU, Washington, D.C., 10-14 Dec.

EuroCG’19


	Introduction
	A KDS for maintaining an area-persistent 1D terrain

