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Abstract
We consider plane subgraphs of simple topological drawings ofKn, and in particular maximal ones.
Fulek and Ruiz-Vargas showed that between any plane connected subgraph F and a vertex v not
in F , there are two edges from v to F not crossing F . We give an O(n) time algorithm to find such
edges, and show that the result also holds if F is disconnected. In particular, any plane subgraph
can be augmented to a 2-connected one. This leads to our main structural result, showing that
maximal plane subgraphs are 2-connected and what we call essentially 3-edge-connected.

1 Introduction

In a topological drawing (in the plane or on the sphere) of a graph, vertices are represented by
points and edges are arcs with its two vertices as endpoints. It is simple if two edges intersect
at most in a single point, either at a common endpoint or at a crossing in their relative
interior. Let Dn be a simple topological drawing of the complete graph Kn on n vertices.
Clearly, all straight-line drawings are simple topological drawings, and thus problems on
embedding graphs on a set of points usually generalize to finding subgraphs of Dn. Such
problems are often concerned with crossing-free (i.e., plane) subgraphs. (Herein, we consider
graphs in connection with their drawings, and in particular when addressing subgraphs of
Kn we also consider the associated sub-drawing of Dn.) Crossing-free edge sets in Dn have
attracted considerable attention. Pach, Solymosi, and Tóth [4] showed that any Dn has
Ω

(
log1/6(n)

)
pairwise disjoint edges. This bound was subsequently improved [5, 1, 8]. The

current best bound of Ω(n1/2−ε) is by Ruiz-Vargas [7]. In the course of their work on disjoint
edges and empty triangles in Dn, Fulek and Ruiz-Vargas [2] showed the following lemma.

I Lemma 1.1 (Fulek and Ruiz-Vargas [2]). Between any plane connected subgraph F of Dn

and a vertex v not in F , there exist at least two edges from v to F that do not cross F .

In this work, we show that such edges incident to v can be found in O(n) time. Further,
we extend their result to disconnected plane subgraphs. It turns out that any plane subgraph
of Dn can be augmented to a 2-connected plane subraph of Dn. Maximal plane subgraphs
of Dn have further interesting properties. For example, we show that, when removing two
edges, they either stay connected or one of the two components is a single vertex.
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Figure 1 The order of the first intersections of S(v) along the face matches the rotation of v.

2 Adding a single vertex

Lemma 1.1 turns out to be a useful workhorse for identifying plane subgraphs. We provide
an efficient algorithm for computing the uncrossed edges. We assume that a topological
drawing Dn of Kn with vertex set V = {v1, . . . , vn} is given by its rotation system and the
inverse rotation system: The rotation of a vertex vi ∈ V is a permutation of V \ {vi} given
by the circular order in which the edges to all other vertices emanate from vi. We denote
these edges by S(v), i.e., the star with center v. The inverse rotation system that, for each
vertex vi and each index j 6= i gives the index of vj in the (linearized) rotation of vi. (It
can be obtained from the rotation system in O(n2) time.) Using these two structures, it is
well-known that one can determine whether two edges cross, in which direction an edge is
crossed, and in which order two non-crossing edges cross a third one in constant time [3].

I Theorem 2.1. Given a simple topological drawing of Kn, a connected plane subgraph F ,
and a vertex v not in F , we can find the edges from v to F not crossing F in O(n) time.

Proof. W.l.o.g., let the face that contains v be the outer face f . For each edge from v to F ,
consider its first intersection with F . The order in which these points are encountered in a
clockwise walk of the boundary of f matches the rotation of v (restricted to F ); see Figure 1.
(Edges walked twice can be seen as two “half-edges”, essentially treating f as a cycle.) The
algorithm starts by finding, for any edge vw1, the edge of F that intersects vw1 closest to v
along vw1. Using the rotation system and its inverse, this edge e1 of face f can be found in
linear time. We keep uncrossed edges of S(v) on a stack σ and walk the boundary of f and
the rotation of v, in each step making progress in at least one of them or removing an edge
from σ. Let vwi be the next edge in the counterclockwise rotation of v (initially vw2). If vwi
crosses ek (initially e1), we iterate considering the counterclockwise successor vwi+1 of vwi
in the rotation of v. If there is no intersection of vwi and ek, we iterate with the clockwise
successor ek+1 of ek in f instead of ek, after popping all edges from σ that cross ek+1. We
do the same if wi is the clockwise endpoint of ek along f ; in addition, if vwi is clockwise
between ek and ek+1 in the rotation of wi, we put vwi on σ and in the next iteration consider
vwi+1. Note that in a generic step σ contains the explored edges of S(v) uncrossed by the
explored edges e1, . . . , ek−1 of f . Eventually, σ contains the uncrossed edges of S(v). J

We now discuss an extension of Lemma 1.1 to plane subgraphs. This will also follow
independently from Theorem 3.1. Still, our result (proven in the full version) gives further
insight on the position of the edges in the rotation of the additional vertex v.



A. García, J. Tejel, A. Pilz 36:3

Let F be a plane subgraph of Dn. The edges of star S(v) are called rays. Suppose that
ray vr first crosses the edge pq of F . W.l.o.g., we suppose that the rays vr, vp, and vq appear
in this clockwise order around v. Let x be the crossing of ray vr and edge pq. We define the
clockwise range Rcw of rays centered at v corresponding to crossing x: if no ray in the range
(vp, vq) crosses edge pq between x and p, then Rcw is the set of rays in the clockwise range
(vr, vp] (i.e., including vp but not vr); otherwise, if some rays in the clockwise range (vp, vq)
cross edge pq between x and p, then Rcw is the set of rays in clockwise range (vr, vl), where
vl is the ray in the range (vp, vq) crossing edge e between x and p in a point y closest to x
along pq. See Figure 2, which also indicates the analogous definition of the counterclockwise
range Rccw.
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Figure 2 The clockwise and counterclockwise ranges of a first crossing.

I Proposition 2.2. Suppose ray vr first crosses edge e of F at point x. Let Rcw and Rccw
be the ranges of rays of v corresponding to that crossing. Then, each one of those two ranges
contains an uncrossed ray. As a consequence, S(v) contains at least two uncrossed rays.

3 Structure of maximal plane subgraphs

I Theorem 3.1. A maximal plane subgraph of any Dn is spanning and 2-connected.

Proof. The proof is by induction on n. The result is obviously true for n ≤ 3. For n > 3,
suppose there exists a maximal plane subgraph F̄ that is not 2-connected.

We first argue that, under this assumption, F̄ does not have a vertex v of degree less
than 3. Suppose the contrary and let F ′ be the subgraph of F̄ after removing v, and let
F̄ ′ be a maximal plane subgraph (in the drawing Dn − {v} of Kn−1) containing F ′; by the
induction hypothesis, F̄ ′ is 2-connected. We observe that v cannot have degree less than 2,
as applying Lemma 1.1 to v and F̄ ′ would give two edges at v not crossing F̄ , contradicting
the maximality of F̄ . Suppose v has degree 2. As we assume that F̄ is not 2-connected,
F ′ cannot be 2-connected. However, F̄ ′ is 2-connected, and hence there exists an edge e′
in F̄ ′ − F ′. By the maximality of F̄ , e′ must cross at least one edge vw of F̄ incident to v.
But applying Lemma 1.1 to v and F̄ ′ gives at least two edges incident to v not crossing F̄ ′.
These two edges and also vw do not cross F̄ , contradicting the maximality of F̄ .

Assume that F̄ is not connected. Let C1, C2 be two connected components of F̄ . As
all vertices have degree at least 3, C1 cannot be an outerplanar graph, and thus has more
than one face. W.l.o.g., the unbounded face contains C2. Let v1 be an interior vertex of C1.
Let F ′ be the graph obtained from F̄ by removing v1, and let f1 be the face in F ′ that
contains v1. The face containing C2 remains unchanged by the removal. By induction, F ′
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Figure 3 The black edges form a maximal plane subgraph with d3n/2e edges. The missing edges
should be drawn as straight line segments inside the convex hull of the set of points.

can be completed to a 2-connected plane graph F̄ ′. Due to the maximality of F̄ , all edges in
F̄ ′−F ′ must be in f1. As C2 is outside f1, F̄ ′ could not be connected. Thus, F̄ is connected.

By a similar reasoning we arrive at our contradiction to F̄ not being 2-connected. A block
is a 2-connected component of a graph, and a leaf block is a block with only one cut vertex.
As F̄ is not 2-connected, it has at least two leaf blocks B1 and B2. As all vertices have degree
at least 3, B1 cannot have all its vertices on the same face. Again, w.l.o.g., B2 is in the outer
face of B1, and there is an interior vertex v1 of B1. Removing v1 from F̄ , we obtain a plane
graph F ′ that has a face f1 containing v1, and F ′ is contained in a maximal plane graph F̄ ′
that is 2-connected. Again, by maximality of F̄ , all edges in F̄ ′−F ′ must be in f1. However,
this contradicts the fact that F̄ ′ is 2-connected. Hence, F̄ must be 2-connected. J

Theorem 3.1 gives a means of obtaining more properties of maximal plane subgraphs.

I Lemma 3.2. If a maximal plane subgraph F̄ of Dn contains a vertex v of degree 2, then
the subgraph of F̄ obtained after removing v is also maximal in Dn − {v}.

I Proposition 3.3. Any maximal plane subgraph F̄ of Dn with n ≥ 3 must contain at least
min(d3n/2e, 2n− 3) edges. This bound is tight.

A sketch for showing tightness of d3n/2e edges is given in Figure 3.

I Lemma 3.4. Let C = (v1, v2, . . . , vk) be a plane cycle of Dn, k ≥ 3, with faces f1 and f2.
If there is no diagonal of C entirely in f1, then all diagonals of C are entirely in f2.

Proof. The proof is by induction on k. For k < 5 the statement is obvious, so suppose k ≥ 5
and consider only the subgraph induced by the vertices of C. By Lemma 3.2, there must
exist a diagonal placed in f2 connecting two vertices at distance 2 on C. W.l.o.g., let this
diagonal be vkv2 and let ∆ be the triangle vkv1v2. Then the cycle C1 = (v2, v3, . . . , vk) with
k − 1 vertices has the faces f ′1 = f1 + ∆ and f ′2 = f2 −∆.

We argue that there cannot be diagonals of C1 entirely in f ′1. Such a diagonal e would
have to intersect ∆. When adding e to C ∪ {vkv2} and removing all edges crossed by e, we
obtain a plane graph F in which v1 has degree 0 or 1. By Lemma 1.1, there must be another
edge between v1 and C1, and this would be a diagonal of C entirely in f1. Thus, by induction,
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any diagonal vivj of C1 is entirely in f ′2 and hence also in f2. It remains to see that the
diagonals with endpoint v1 are also in f2. By our induction hypothesis, diagonal v2v4 is in f ′2
and thus also in f2. Hence, applying the hypothesis on the cycle C3 = (v1, v2, v4, . . . , vk) we
deduce that all the diagonals incident to v3 must be in f2. So it remains to see that diagonal
v1v3 is also in f2. But also v3v5 is in f ′2, so it is also in f2, and again by induction on the
cycle (v1, v2, v3, v5, . . . , vk), all the diagonals not incident to v4 are also in f2. J

It was previously known that even for the case where there are diagonals intersecting both
faces, there are at least dk/3e of them not crossing C (cf. [6, Corollary 6.6]); Proposition 3.3
implies that for k ≥ 6, there are at leastdk/2e diagonals not crossing C.

To prove the next result we recall some definitions and properties of any 2-connected
graph G = (V,E). Two vertices v1, v2 are called a separation pair of G if the induced
subgraph G \ {v1, v2} on the vertices V \ {v1, v2} is not connected. Let G1, . . . , Gl, with
l ≥ 2, be the connected components of G \ {v1, v2}. For each i ∈ {1, . . . , l}, let G∗i be the
graph induced by V (Gi) ∪ {v1, v2}. Observe that G∗i contains at least one edge incident to
v1 and at least another incident to v2.

I Theorem 3.5. Let F̄ be a maximal plane subgraph of Dn, n ≥ 3. Then, for each separation
pair v1, v2 of F̄ , at least one of the components F̄ ∗i must be 2-connected.

Proof. Suppose that v1, v2 is a separation pair of F̄ , that F̄ \ {v1, v2} has the connected
components F̄1, F̄2, . . . , F̄l, and that none of the components F̄ ∗i is 2-connected. Then each
subgraph F̄ ∗i contains at least one cut vertex ui. Since F̄i is connected and there exist edges
in F̄ ∗i incident to v1 and v2, vertex ui is different from v1 and v2. The graph F̄ ∗i \ {ui} has
exactly two components, one containing v1 and the other containing v2, as otherwise F̄ would
not be 2-connected. Thus, any path in graph F̄ ∗i from v1 to v2 must use ui. In particular,
v1v2 cannot be an edge of F̄ . Besides, since v1, v2 are in different connected components of
F̄ ∗i \ {ui}, if R is the face of F̄ ∗i where point ui appears at least twice, then any continuous
curve connecting v1 to v2 either contains ui or some point of the interior of R.

Since F̄ is 2-connected, graph F̄ \ {v1} is connected with v2 as a cut vertex. As F̄ is
plane, we can suppose, w.l.o.g., that v1 is in the outer face of F̄ \ {v1} and that around
vertex v1 clockwise first there appear the edges to some vertices of component F̄1, then edges
connecting v1 to points of F̄2 and so on. See Figure 4. Therefore v1 and v2 must be in the
faces Ri of F̄ placed between the last edge from v1 to F̄i and the first edge from v1 to F̄i+1,
for i ∈ {1, . . . , l}. As, by maximality, no edge is entirely in any of those Ri faces, Lemma 3.4
implies that no point of the edge v1v2 in Dn can be inside any Ri. Thus, v1v2 must begin
between two edges v1v, v1v

′ with both v and v′ belonging to a common connected component
F̄i. However, since ui belongs to the faces Ri−1 and Ri, any curve from v1 and v2 passes
through point ui or through the interior of Ri−1 or Ri. Therefore, F̄ cannot be maximal. J

We call a graph essentially 3-edge-connected if it stays connected after removing any two
edges not sharing a vertex of degree 2 (i.e., the graph either stays connected or one component
is a single vertex). Theorem 3.5 implies that a maximal plane subgraph is essentially 3-edge-
connected: If the removal of two edges v1v2 and v′1v′2 results in two non-trivial components
(see Figure 5), then the separation pair v1, v

′
2 gives no 2-connected component.

I Corollary 3.6. Any maximal plane subgraph of a simple topological drawing of Kn is
essentially 3-edge-connected.

Finally, we mention another interesting implication of Theorem 3.1; for a vertex v, we
can augment S(v) to a 2-connected plane graph, and thus the remaining part contains a tree.
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Figure 4 A plane graph with separating pair v1, v2 and three components F ∗i , none 2-connected.
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Figure 5 A graph that is not essentially 3-edge-connected. The separation pair v1, v′2 gives two
components C1 ∪ {v′1v′2} and C2 ∪ {v1v2}, neither of which is 2-connected.

I Corollary 3.7. Let S(u) be the edges of Dn incident to a vertex u. There exist a tree Tu
spanning the vertices V \ {u}, such that the edges of S(u) ∪ Tu form a plane subgraph of Dn.

I Open Problem 1. Given a not necessarily connected plane graph F in Dn, plus a vertex v
not in F , can the edges of S(v) incident to but not crossing F be found in o(n2) time?
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