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—— Abstract

In the Art Gallery Problem we are given a polygon P on n vertices and a number k. We want
to find a guard set G of size k, such that each point in P is seen by a guard in G. Formally, a

guard g sees a point p € P if the line segment pg is fully contained inside P.

We analyze the Art Gallery Problem under the lens of Smoothed Analysis. The significance
of our results is that algebraic methods are not needed to solve the Art Gallery Problem in typical
instances. This is the first time an JR-complete problem was analyzed by Smoothed Analysis.
Details can be found in the full-version [14].

A short video explaining the result is available at youtu.be/Axs7k-qL2zY.

1 Introduction

In the Art Gallery Problem we are given a polygon P and a number k. We want to find a
guard set G of size k, such that each point in P is seen by a guard in G. Formally, a guard
g sees a point p € P if the line segment pg is fully contained inside P. We usually denote
the vertices of P by v1,...,v,, and the number of vertices by n.

One of the most fundamental questions on the Art Gallery Problem is whether it is
contained in the complexity-class NP. A first doubt of NP-membership was raised in 2017,
when Abrahamsen, Adamaszek and Miltzow showed that there exist polygons with vertices
given by integer coordinates, that can be guarded by three guards, in which case some guards
must necessarily have irrational coordinates [1]. (It is an open problem whether irrational
guards may be required for polygons which can be guarded by two guards.) Shortly after,
the same authors could show that the Art Gallery Problem is complete for the complexity
class IR [2].

The class dR is the class of all decision problems that are many-one reducible in polyno-
mial time to deciding whether a given polynomial Q € Z[z1,...,z,] has a real root, i.e. a
solution x € R™ such that @Q(z) = 0. From the field of real algebraic geometry [4], we know
that

NP C R C PSPACE.

The complexity class dR provides a tool to give much more compelling arguments that
a problem may not lie in NP than merely observing that the naive way of placing the
problem into NP does not work. Indeed various problems have been shown to be dR-
complete [8, 9, 13, 16, 17, 20-23] and thus either non of them lie in NP or all of them do.
While those theoretical results on the Art Gallery Problem are quite negative, the history
and practical experiences tell a more positive story. First of all, it took more than four
decades before an example could be found that requires irrational guards [1]. Regarding the
practical study of the Art Gallery Problem, we want to point out that several researchers
have implemented heuristics, that were capable of finding optimal solutions for a large class
of simulated instances [3, 5-7, 10-12, 15, 19]. Even up to 5000 vertices.
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dR-completeness is our main motivation, to see if there is a simple algorithm that solves
the Art Gallery Problem. As we don’t expect that such an algorithm is correct in the worst
case, we turn our attention to different ways to analyze algorithms.

Smoothed Analysis

Some algorithms perform much better than predicted by their worst case analysis. The
most famous example seems to be the Simplex-Algorithm. It is an algorithm that solves
linear programming efficiently in practice, although it is known that there are instances for
seemingly all variants of the algorithm that take an exponential amount of time (see for
instance [18]). There are several possible ways to explain this behavior. For example, it
could be that all practical instances have some structural properties, which we have not yet
discovered. We could imagine that a more clever analysis of the Simplex-Algorithm would
yield that it runs in polynomial time, assuming the property is presented. To the best of our
knowledge such a property has not yet been identified. Another approach would be to argue
that worst case examples are just very “rare in practice”. The problem with this approach is
that it is difficult to formalize. Smoothed Analysis is a nice combination of the average case
and the worst case analysis and generally referred to as Smoothed Analysis, as it smoothly
interpolates between the two. It was developed by Spielman and Teng [24], who introduced
the field in their celebrated seminal paper “Smoothed Analysis of algorithms: Why the
simplex algorithm usually takes polynomial time". Both authors received the Gédel Prize in
2008, and the paper was one of the winners of the Fulkerson Prize in 2009. In 2010 Spielman
received the Nevanlinna Prize for developing Smoothed Analysis.

The rough idea is to take the worst instance and perturb it slightly in a random way.
The smoothed expected running time can be defined as follows: Let us fix some §, which
describes the maximum magnitude of perturbation. We denote by ({25, u15) a corresponding
probability space where each x € {25 defines for each instance I a new ‘perturbed’ instance
I,. We denote by T'(I,), the time to solve the instance I,. Now the smoothed expected
running time of instance I equals

Ti1) = B T(L) = / L T@s(o)

If we denote by I';, the set of instances of size n, then the smoothed running time equals:

Tamooth (1) = Ter xéEfz(; T(Iz).

Roughly speaking this can be interpreted as saying, that not only do the majority of instances
have to behave nicely, but actually in every neighborhood the majority of instances behave
nicely. The expected running time is measured in terms of n and §. If the expected running
time is small in terms of 1/§ then this means that difficult instances are fragile with respect
to perturbations. This serves as theoretical explanation why such instances may not appear
in practice.

Although the concept of Smoothed Analysis is more complicated than simple worst case
analysis, it is a new success story in theoretical computer science. It could be shown that
various algorithms actually run in smoothed polynomial time, explaining very well their
practical performance.

1.1 Defintions

The different models of perturbation are illustrated in Figure 1. A rigorous definition can
be found in the full-version of the paper [14].
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(b) The polygon together with an Edge-Inflation. Roughly speaking, every edge of the polygon is
“pushed” to the outside by the same amount.

(c) If we continue the edges, of a Minkowski-Inflation, we get an Edge-Inflation.

Figure 1 Overview, over various models, how a polygon can be perturbed. We use the uniform
distribution in each case.

1.2 Results

Our main result states that typical instances do not require irrational guards and the ex-
pected number of bits per guard is logarithmic in L,§ and n. The result establishes that
algebraic methods are not needed in typical instances.

» Theorem 1.1 (Bit-complexity). Let P be a polygon on n wvertices, suppose P C [0, L]
for some positive integer L. If § > 0 is the magnitude of a Minkowski-Inflation or Edge-
Inflation, then the expected number of bits per guard to describe an optimal solution equals

O (log (%))

As a simple corollary of the proof, we get that a fine grid of expected width w =
20Uoe(nL/9)) — (n[,/§)°() will contain an optimal guarding set. This may appear at first
sight as a candidate set of polynomial size, however recall that the vertices are given in
binary and thus L may be exponential in the input size.

It can be argued (see the full-version [14]) that this also leads to expected NP algorithms
in a specific sense. A very careful discussion of the different models of computation is
needed [14] to make the above statement precise. Our results can also be extended to other
types of perturbations [14].

EuroCG’'19



35:4 Smoothed Analysis of the Art Gallery Problem

Notation

We write f(n) <. g(n), to indicate f(n) = O(g(n)) or equivalently f(n) < cg(n), for some
large enough constant c. (Note that this is, in turn, equivalent to f(n) < c¢1g(n) + c2. To
see this note that g(n) > 1 and choose ¢ = ¢; + ¢3.)

2 Preliminaries

In this section we establish some general facts that will be needed throughout the paper.

The key idea of the paper are some monotonicity properties of Minkowski-Inflation and
Edge-Inflation. Roughly speaking guarding can only get easier after inflations. (We denote
by OPT(P) a guarding set of P of optimal size. We denote by OPT(P,C) a guarding set
of P of optimal size, when restricted to the set C.)

» Lemma 2.1 (Fixed Minkowski-Inflation). Let P be a polygon, t > 0 and Py its Minkowski-
Inflation by magnitude t. Then |OPT(P)| > |OPT(P;,wZ?)|, for any w < v/2t.

Proof. Given OPT = OPT(P), we define a set G C wZ? of guards of size |G| = |OPT)|, by
rounding every point in OPT to its closest grid point in wZ?. We will show that G guards
P;. See Figure 2 for an illustration.

Figure 2 Top: The Region R is convex, and contains a guard g € G and the point x. Thus z is
guarded by g. Bottom: The Region R’ is easily seen to be convex.

Let us fix some arbitrary point x € P;. It is sufficient to show that G guards z. By
definition of P;, there exists an x; € P and an zo € disk(¢) such that ¢ = z; + .
Furthermore let g; be a guard of OPT that guards x;. (disk(?) is a disk of radius t.)
Consider the region R = g2 @ disk(t), i.e., the Minkowski-sum of the segment g;x; with a
disk of radius t. As the segment g;z; is contained in P, it holds that R is contained in P;.
Also as both the segment and the disk are convex, so is R. At last notice that R contains a
point g € G, as every disk of radius ¢ contains a point of the grid wZ? with w = v/2t. As R
is convex, g € G guards . <

» Lemma 2.2 (Fixed Edge Inflation). Let P be a polygon with integer coordinates and t > 0
and P; the Edge-Inflation of P by t. Then |OPT(P)| > |OPT(P;,wZ?)|, for any w < v/2t.

Proof. We follow closely the proof of Lemma 2.1. See Figure 2 for an illustration.
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Given OPT = OPT(P), we define a set G C wZ? of guards of size |G| = |OPT]|, by
rounding every point in OPT to its closest grid point in wZ?. We will show that G guards
the shape P;. Note that in an edge inflation by ¢, we get the same shape as by a Minkowski-
Inflation by ¢, except that we have to add some small regions at the convex corners, as
illustrated in Figure 1c. We already know that G guards the Minkowski ¢-inflation of P. So
it remains to show that G guards those little extra regions, as discussed above.

Let us fix some arbitrary point z € P; inside one of those extra regions. We will show
that G guards x. Let v be the vertex according to the region that x sits in. Furthermore
let g1 be a guard of OPT that guards v. Consider the region R = gjv ¢ disk(0,t). We
define R’ as the region R together with the region that z sits in. Obviously z € R’ and also
there exists a point of G in R. It holds by construction that R’ is convex. This finishes the
proof. |

3 Expected Number of Bits
This section is devoted to show the main theorem.

Proof. Let us assume that there are some numbers 0 = tg < ¢t; < ... < t; = ¢ such that
for all ¢ and s € [t;—1,;) holds that |OPT'(Ps)| is constant. As |[OPT(Ps)| is monotonically
decreasing, for increasing s, it holds that £ < n. We denote by 6; =t; — t;_1.

Note that if the perturbation happens to be s € [t;—1,t;] then a grid of width w =
\/Q(s — t;—1) contains an optimal solution to guard Ps, see Lemma 2.1 and 2.2. Note that
we use the lemmas on the shape P;, , inflated by s —t;_;. Then the number of bits per
guard to describe the solution equals O(log(L/w)) per guard. To see this note that we can
use b = [1/w] as denominator of all coordinates and the numerators are upper bounded by
[L/w]. Thus O(log(L/w)) bits suffice. Let us denote the number of bits after a perturbation
by s as B(s). We denote by E(B;) the expected number of bits for s € [t;_1,t;). The expected
number of bits E(B;) can be calculated as

1 1 1
E(B;) = f/ B(s) <. —/ log(L/(s —ti—1)) = = log(L/s).
61 SsE[ti—1,t;) sE[ti—1,ts) 51 s€[0,64]

4

Using some computer algebra system and concavity of log(1/z), we get

_ (%5 (1 +log(L/5,)) <. log(L/5:).

We are now ready to compute E(B).

1 1
E(B)=35 > OE(B)=c5 > dlog(L/5)
=1, i=1,00
As the function z log(1/z) is concave the maximum is attained, if 6; = ... = dy = §/¢. Thus
we get
1
E(B) <c 5 > 6/t1og(LL/5) =log(Lt/s) <. log(Ln/s). <«
=1,
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