
Improved Time-Space Bounds for Grid Graph
Reachability
Rahul Jain1 and Raghunath Tewari2

1 Indian Institute of Technology Kanpur
jain@cse.iitk.ac.in

2 Indian Institute of Technology Kanpur
rtewari@cse.iitk.ac.in

Abstract
The reachability problem is to determine if there exists a path from one vertex to the other in a
graph. Grid graphs are the class of graphs where vertices are present on the lattice points of a
two-dimensional grid, and an edge can occur between a vertex and its immediate horizontal or
vertical neighbor only.

Asano et al. presented the first simultaneous time space bound for reachability in grid graphs
with n vertices by presenting an algorithm that solves the problem in polynomial time and
O(n1/2+ε) space [2]. In 2018, the space bound was improved to Õ(n1/3) by Ashida and Nakagawa
[4]. In this paper, we further improve the space bound and present a polynomial time algorithm
that uses O(n1/4+ε) space to solve reachability in a grid graph.

1 Introduction

Given a graph G and two vertices s and t in it, the reachability problem seeks to answer
whether there exists a path from s to t in G. It is of fundamental importance in the field
of computer science. Not only is it used as a subroutine in many graph algorithms, but
its study also gives insights into space bounded computations. Reachability in a directed
graph is complete for the class of problems solvable by a nondeterministic Turing machine in
logspace. A deterministic logspace algorithm for it would show NL to be equal to L, thus
solving an open question in the area of computational complexity. In an undirected graph,
reachability was shown to be in L by Reingold [11].

Standard graph traversal algorithms solve reachability in directed graphs using linear
time and space. We also know of Savitch’s algorithm which can solve reachability in O(log2 n)
space but the algorithm requires 2Ω(log2 n) time [12]. So, on one end we have algorithms that
require a small amount of time and a large amount of space, while on the other end, we have
Savitch’s algorithm which requires a small amount of space but a large amount of time. A
natural question we can ask is whether there exists an algorithm that uses time and space
both in small amounts. This question was formally asked by Wigderson in his survey of
reachability problems, if there exists an algorithm for graph reachability which maintains the
polynomial time bound while running in O(nε) space, for some ε < 1 [13].

Barnes, Buss, Ruzzo, and Schieber gave the first sublinear space polynomial time algorithm
for reachability in directed graph [5]. The space complexity of their algorithm is n/2Θ(

√
logn).

We know of polynomial time algorithms with better space complexity for various subclasses
of directed graphs. These include planar graphs [9][3], genus g graphs, H-minor-free graphs,
K3,3-minor-free graphs, K5-minor free graphs [7], Layered planar graphs [8] and Unique path
graphs [10].

Our concern here is with grid graphs. Grid graphs are a subclass of planar graphs.
Reachability in planar graphs belongs to a subclass of NL called unambiguous logspace UL
[6]. Reachability in planar graphs can be reduced to reachability in grid graphs in logspace
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[1]. Asano and Doerr presented a polynomial time algorithm that uses O(n1/2+ε) space for
solving reachability in grid graphs [2]. Ashida and Nakagawa presented an algorithm with
improved space complexity of Õ(n1/3) [4]. Ashida and Nakagawa’s algorithm proceeded by
first dividing the input grid graph into subgrids. It then used a gadget to transform each
subgrid into a planar graph, making the whole of the resultant graph planar. Finally, it used
the planar reachability algorithm of Imai et al. [9] as a subroutine to get the desired space
bound.

In this paper, we present an algorithm with a space complexity of O(n1/4+ε), thereby
improving the bound of Ashida and Nakagawa.

I Theorem 1.1. For every ε > 0, there exists a polynomial time algorithm that decides
reachability in grid graphs using O(n1/4+ε) space.

Our algorithm works by first dividing the grid into subgrids. It then recursively solve
each grid to get an auxiliary graph. It then solves this auxiliary graph by using a space
efficient subroutine that we develop for it.

2 Preliminaries

We denote the vertex set of a graph G by V (G) and its edge set by E(G). For a subset U of
V (G), we denote the subgraph of G induced by the vertices of U as G[U ]. For a graph G,
we denote the set of all its connected components by cc(G). For an edge e = (u, v), we let
tail(e) be u and head(e) be v.

In a drawing of a graph on a plane, each vertex is mapped to a point of the plane, and
each edge is mapped to a simple arc whose endpoints coincide with the mappings of the
end vertices of the edge. Also, the interior of an arc for an edge does not contain any other
vertex points.

We call a graph G an N ×N grid graph if its vertices can be drawn on coordinates (i, j)
where 0 ≤ i, j ≤ N and for all edges of G, their end vertices are at unit distance.

3 Main Result

For simplicity of discussion, we begin with an N ×N grid graph and present a polynomial
time algorithm with a space complexity O(N1/2+ε). When measured in terms of the number
of vertices n of the graph, this space complexity translates to O(n1/4+ε).

3.1 Auxiliary Graph
For a parameter α < 1, we first define the α-auxiliary graph Gα of a grid graph G. We divide
our grid graph G into N2α subgrids such that each subgrid is a N1−α ×N1−α grid as shown
in Figure 1a. Let Gαi,j be the graph obtained by solving reachability in the subgrid in the i-th
row and j-th column. We obtain Gα by replacing each subgrid by its corresponding solved
blocks. Since each of the subgrids contains 4N1−α vertices on its boundary, the total number
of vertices in Gα is at most 4N1+α. An example of Gα is shown in Figure 1b. For the rest of
this article, for any i and j, we will call the graph Gαi,j a block of Gα. Note that Gα might
have parallel edges. However, each such edge will belong to a different block of Gα.

Our algorithm for reachability constructs Gα by solving the N1−α×N1−α grids recursively.
It then uses a polynomial time subroutine which solves Gα. Note that we do not store the
graph Gα explicitly, since that would require too much space. Instead, we solve a subgrid
recursively everytime the subroutine queries for an edge in that subgrid of Gα.
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(a) Graph divided into subgrids (b) Auxiliary Graph

Figure 1 An example of a grid graph G and the corresponding auxiliary graph Gα

Our strategy is to show that for every small positive constant β, there exists a polynomial
time algorithm which solves reachability in Gα using Õ(ñ1/2+β/2) space where ñ is the
number of vertices in Gα. As discussed earlier, ñ can be at most 4N1+α. Hence, the main
algorithm would require Õ(N1/2+β/2+α/2+αβ/2) = O(N1/2+ε) space.

3.2 Properties of the Auxiliary Graph
The auxiliary graph that we construct might not be planar; there can be edges that cross
each other. However, since we construct it from a grid graph, we can make the following
essential observations about the auxiliary graph Gα.

I Observation 3.1. If two edges e and f of an auxiliary graph Gα cross each other, then
the graph G also has the edges (tail(e), head(f)) and (tail(f), head(e)).

I Observation 3.2. If two edges e1 and e2 crosses a certain edge f , and e1 is closer to
tail(f) than e2, then the edge (tail(e1), head(e2)) is also present in the graph Gα.

3.3 Constructing a pseudoseparator
Imai et al. used a separator construction to solve the reachability problem in planar graphs
[9]. A separator is a small set of vertices whose removal disconnects the graph into smaller
components. An essential property of a separator is that, for any two vertices, a path between
the vertices must contain a separator vertex if the vertices lie in two different components
with respect to the separator.

Unfortunately the graph Gα might not have a small separator. However, Gα has a different
kind of separator, which we call a pseudoseparator (see Definition 3.3). The pseudoseparator
allows us to decide reachability in Gα, in an efficient manner and obtain the claimed bounds.

I Definition 3.3. Let G be a grid graph and H be a vertex-induced subgraph of Gα with h
vertices. Let C be a subgraph of H and H(C) be the subgraph of H formed by removing all
the vertices of C and all the edges which crosses an edge of C. Let f : N→ N be a function.
We call C an f(h)-pseudoseparator if the size of every connected component in cc(H(C)) is
at most f(h). The size of C is the total number of vertices and edges of C summed together.

For a vertex-induced subgraph H of Gα, an f(h)-pseudoseparator is a subgraph of H
that has the property that, if we remove the vertices as well as all the edges which cross
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one of the edges of pseudoseparator, the graph gets disconnected into small pieces. Now,
any path which connects two vertices in different components, must either contain a vertex
of pseudoseparator or must contain an edge that crosses an edge of pseudoseparator (see
Observation 3.4). We divide the graph using this pseudoseparator and show an algorithm
which recursively solves each subgraph and then combines their solution efficiently using the
above observations.

I Observation 3.4. Let G be a grid graph and let H be a vertex-induced subgraph of Gα.
Let C be a subgraph of H. Then the following holds:
1. For any two distinct U1 and U2 of cc(H(C)), U1 ∩ U2 = ∅.
2. V (C) ∪ (

⋃
U∈cc(H(C)) U) = V (H)

3. For every edge e in H, if there exist distinct sets U1 and U2 in cc(H(C)) such that one of
the endpoints of e is in U and the other is in U2, then there exists an edge f in C such
that e crosses f .

We construct a pseudoseparator using the next lemma.

I Lemma 3.5. Let G be a grid graph, and let H be a vertex-induced subgraph of Gα with
h vertices. For any constant β > 0, there exists an algorithm which takes H as input
and outputs an (h1−β)-pseudoseparator of H of size O(h1/2+β/2) in Õ(h1/2+β/2) space and
polynomial time.

We briefly comment on how to construct a pseudoseparator of a vertex-induced subgraph
H of Gα. First, we pick, in logspace, a maximal subset of edges from H so that no two edges
cross. Then, we triangulate the resulting graph and use Imai et al.’s algorithm to find its
separator. Call the triangulated graph Ĥ and the set of separator vertices S. The vertex set
of pseudoseparator of H contains all the vertices of S and four additional vertices for each
edge of Ĥ[S] that is not present in H. The edge set of pseudoseparator of H contains all
edges of H which are also in Ĥ[S] and four additional edges for each edge of Ĥ[S] that is
not present in H.

3.4 Sketch of an Algorithm to Solve Reachability in the Auxiliary Graph
Given a vertex-induced subgraphH ofGα, we first construct its pseudoseparator using Lemma
3.5. Call this pseudoseparator C. We ensure that s and t are part of the pseudoseparator.
Let I1, I2, . . . , Il be the components received after dividing the graph using pseudoseparator.
The subroutine performs a loop with |H| iterations and updates a set of marked vertices.
Initially, it marks the vertex s. After an iteration, it marks a vertex of C if there is a path
from a marked vertex to it such that the internal vertices of that path all belong to only
one of the components Ii. Also, for each edge e of C, the vertex v closest to tail(e) which
satisfies the following two conditions is marked: (i) There exists an edge f which cross e and
tail(f) = v, and (ii) there is a path from a marked vertex to v such that the internal vertices
of the path all belong to only one of the components Ii.

Let P be the shortest path from s to t in H. Suppose P passes through the components
Iσ1 , Iσ2 , . . . , IσL

in this order. The length of this sequence can be at most |H|. As the path
leaves the component Iσj

and goes into Iσj+1 , it can do this in the following two ways:
1. The path exits Iσj through a vertex of pseudoseparator as shown in Figure 2a. In this

case, our algorithm would mark the vertex w.
2. The path exits Iσj through an edge (u, v) whose other endpoint is in Iσj+1 . By Observation

3.4, this edge will cross an edge e of the pseudoseparator. In this case, the algorithm
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Iσj

Iσj+1

(a) The s-t path contains a vertex of the separator

u′ v′
u v

Iσj
Iσj+1e

(b) The s-t path crosses an edge of the separator

Figure 2 Types of crossing of an s-t path with the separator.

would mark the vertex u′ which is closer than u to tail(e) and an edge (u′, v′) crosses e.
By Observation 3.2, the edge (u′, v) would be present in the graph.

Thus after j iteration, the subroutine would traverse the fragment of the path in the
component Iσj

and either mark its endpoint or a vertex which is closer to the edge e of C
which the path crosses. Finally, t will be marked after L iterations if and only if there is a
path from s to t in H.

3.5 Complexity of the Algorithm
Our subroutine solves reachability in a subgraph H (having size h) of Gα. We do not
explicitly store a component of cc(H(C)), since it might be too large. Instead, we identify
a component with the lowest indexed vertex present in it and use Reingold’s algorithm
on H(C) to determine if a vertex is present in that component. We require Õ(h1/2+β/2)
space to calculate pseudoseparator by Lemma 3.5. We can potentially mark all vertices of
pseudoseparator and for each edge of pseudoseparator we mark at most one additional vertex.
Since the size of pseudoseparator is at most O(h1/2+β/2), we require Õ(h1/2+β/2) space. The
algorithm recurses on a graph with h1−β vertices. Hence the depth of the recursion is 1/β,
which is a constant. The total space complexity is thus Õ(ñ1/2+β/2).

Since the graph H is given implicitly in our algorithm, there is an additional polynomial
overhead involved in obtaining its vertices and edges. However, the total time complexity
remains a polynomial in the number of vertices since the recursion depth is constant.
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