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Abstract
We present an efficient algorithm for computing the feasible solution space for a trajectory plan-
ning problem involving an articulated two-link probe constrained to a fixed sequence of motions
– a straight line insertion, possibly followed by a rotation of the end link. Given n line segment
obstacles in the workspace, we show that the feasible trajectory space of the articulated probe
can be characterized by an arrangement of simple curves of complexity O(k), which can be con-
structed in O(n logn+k) time using O(n+k) space, where k = O(n2) is the number of vertices of
the arrangement. Additionally, our solution approach produces a new data structure for solving
a special case of the circular sector intersection query problem.

1 Introduction

In minimally invasive surgeries, a rigid needle-like robotic arm is typically inserted through
a small incision to reach its given target, after which it may perform operations such as
tissue resection and biopsy. Some newly developed variants allow for a joint to be close to
the acting end (tip) of the arm; after inserting the arm in a straight path, the surgeon may
rotate the tip around the joint to reach the target. This enhances the ability to reach deep
targets but greatly increases the complexity of finding acceptable insertion/rotation pairs.

Unlike polygonal linkages that can rotate freely at the joints while moving between a
start and target configuration [2, 8, 9], a simple articulated probe is constrained to a fixed
sequence of moves – a straight line insertion, possibly followed by a rotation of the short link.
This type of motion has not received attention until very recently [3, 4].

As originally proposed in [4], an articulated probe is modeled in <2 as two line segments,
ab and bc, joined at point b. The length of ab can be arbitrarily large (infinitely long), while
bc, corresponding to the tip of the probe, has a fixed length r. A two-dimensional workspace
(see Figure 1) is given by the region bounded by a large circle S of radius R centered at t,
enclosing a set P of n disjoint line segment obstacles and a target point t in the free space.

At the start, the probe is outside S and assumes an unarticulated configuration, in which
ab and bc are collinear, with b ∈ ac. A feasible probe trajectory consists of an initial insertion
of straight line segment abc, possibly followed by a rotation of bc at b up to π/2 radians in
either direction, such that point c ends at t, while avoiding obstacles in the process. If a
rotation is performed, then we have an articulated final configuration of the probe.

The objective of this paper is to characterize and compute the feasible trajectory space
(i.e., set of all feasible trajectories) of the articulated probe.

Previous work. The articulated probe problem in two dimensions was formally introduced in
[4], where an algorithm was presented for finding so-called extremal feasible probe trajectories
in O(n2 logn) time using O(n logn) space. In an extremal probe trajectory, the probe is
tangent to one or two obstacle endpoints. Later, it was shown in [3] that, for any constant δ
> 0, a feasible probe trajectory with a clearance δ from the obstacles can be determined in
O(n2 logn) time using O(n2) space.
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Figure 1 Trajectory planning for an articulated probe. In order to reach point t, a straight
insertion of line segment abc may be followed by a rotation of line segment bc from its intermediate
position (black dashed line) to the final position (black solid line).

Results and contributions. We describe a geometric combinatorial approach for charac-
terizing and computing the feasible trajectory space of the articulated probe. The feasible
configuration space has worst-case complexity of O(n2) and can be described by an arrange-
ment of simple curves. By using the topological sweep method [1], the arrangement can be
constructed in O(n logn+ k) time using O(n+ k) working storage, where k is the number
of vertices of the arrangement. Our approach also results in a simplified data structure of
similar space/time complexity compared to that in [4] for solving a special instance of the
circular sector intersection query problem (i.e., for a query circular sector with a fixed radius
r and a fixed arc endpoint t).

2 Solution approach

We characterize 1) the final configuration space, 2) the forbidden final configuration space,
and 3) the infeasible final configuration space, as detailed in this section.

2.1 Final configuration space
In a final configuration of the articulated probe, point a can be assumed to be located
on S, and point b lies on a circle C of radius r centered at t (see Figure 1). Let θS and
θC be the angles of ta and tb relative to the x-axis, respectively, where θS , θC ∈ [0, 2π).
Since bc may rotate as far as π/2 radians in either direction, for any given θS , we have
θC ∈ [θS − cos−1 r/R, θS + cos−1 r/R]. We call this the unforbidden range of θC . A final
configuration of the articulated probe can be specified by a two-tuple (θS , θC), depending
on the locations of points a and b on circles S and C, respectively (see Figure 2). The final
configuration space Σfin of the articulated probe can be computed in O(1) time.

2.2 Forbidden final configuration space
A final configuration is called forbidden if the final configuration (represented by ab and bt)
intersects with one or more of the obstacle line segments. The following two cases arise.

Case 1. Obstacle line segment s outside C. The corresponding forbidden final configu-
ration space can be characterized as follows. Let angles θi, where i = 1, . . . , 6, be defined
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Figure 2 Final configurations of the probe. The unshaded region of the (θS , θC)-plot represents
the unforbidden final configuration space when the workspace contains no obstacles.

in the manner depicted in Figure 3. Briefly, each θi corresponds to an angle θS at which
point a tangent line between C and s, or from t to s, intersects S. As θS increases from θ1
to θ3, the upper bound of the unforbidden range of θC decreases as a continuous function of
θS . Similarly, when θS varies from θ4 to θ6, the lower bound of the unforbidden range of θC

decreases as a continuous function of θS . For θ3 ≤ θS ≤ θ4, there exists no unforbidden final
configuration at any θC . For conciseness, the upper (resp. lower) bound of the unforbidden
range of θC is simply referred to as the upper (resp. lower) bound of θC hereafter.

Figure 3 Forbidden final configurations due to an obstacle line segment s outside C.

Case 2. Obstacle line segment s inside C. We compute the forbidden final configuration
space for s in a similar way. Note that, as shown in Figure 4, angles θi (where i = 1, . . . , 6)
are defined differently from the previous case. For θ1 ≤ θS ≤ θ4, the upper bound of θC is
equivalent to θ2. For θ3 ≤ θS ≤ θ6, the lower bound of θC equals to θ5.

We can find the forbidden final configuration space for an obstacle line segment (i.e.,
final configuration obstacle) in O(1) time. Thus, for n obstacle line segments, it takes a
total of O(n) time to compute the corresponding set of configurations. The union of these
configurations forms the forbidden final configuration space Σfin,forb of the articulated probe.
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Figure 4 Forbidden final configurations due to an obstacle line segment s inside C.

The free final configuration space Σfin,free of the articulated probe is the complement of
Σfin,forb; that is, Σfin,free = Σfin \ Σfin,forb.

2.3 Infeasible final configuration space
The feasible trajectory space of the articulated probe can be characterized as a subset of
Σfin,free. A final configuration is called infeasible if the circular sector associated with the
final configuration (i.e., the area swept by segment bc to reach target point t) intersects with
any obstacle line segment. We denote the infeasible final configuration space as Σfin,inf .

Let C ′ be a circle centered at t and of radius
√

2r. A circular sector associated with
a final configuration can only intersect with an obstacle line segment lying inside C ′. In
contrast to characterizing the lower and upper bounds of θC as θS varies from 0 to 2π as in
the prior section, we herein perform the characterization in reverse. For conciseness, we only
present arguments for the negative half of the θS-range, which is [θC − cos−1 r/R, θC ], and
the similar arguments apply to the other half due to symmetry. As before, two cases arise.

Case 1. Obstacle line segment s inside C. As shown in Figure 5, we are only concerned
with computing the lower bound of θS for θC ∈ [φ1, φ2], given that the entire negative half of
the θS-range (i.e., [θC − cos−1 r/R, θC ]) is feasible for θC ∈ [0, φ1]∪ [φ3, 2π), and is infeasible
for θC ∈ [φ2, φ3] due to intersection of bt with s.

For brevity, the quarter-circular sector associated with a point b (i.e., the maximum
possible area swept by segment bc to reach point t), where the angle of tb (relative to the
x-axis) is θC , is henceforth referred to as the quarter-circular sector associated with θC .

φ1, φ2 and φ3 can be described in brief as follows (see Figure 5a). φ1 is the smallest angle
θC at which the circular arc (of the quarter-circular sector associated with θC) intersects
with s (at one of its endpoints or interior points). φ2 is the smallest angle θC at which bt (of
the quarter-circular sector associated with θC) intersects with s (at one of its endpoints).
φ3 is the largest angle θC at which bt (of the quarter-circular sector associated with θC)
intersects with s (at one of its endpoints). In other words, as θC varies from 0 to 2π, φ1 and
φ3 are the angles θC at which the quarter-circular sector associated with θC first and last
intersects with s, respectively.

For θC ∈ [φ1, φ2], the lower bound of θS can be represented by a piecewise continuous
curve, which consists of at most two pieces, corresponding to two intervals [φ1, α] and [α, φ2],
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Figure 5 Infeasible final configurations due to an obstacle line segment s inside C. Illustration of
θS-lower bound for (a) θC ∈ [φ1, φ2], (b) φ1 < θC < α, (c) θC = α, and (d) α < θC < φ2.

where α is the angle θC of the intersection point between C and the supporting line of s.
Note that, if φ1 ≤ α, then the lower-bound curve of θS has two pieces; otherwise, the curve
is composed of one single piece.

For θC ∈ [φ1, α], as depicted in Figure 5b, the lower bound of θS is indicated by point a
of straight line segment abc′ (i.e., intermediate configuration), where c′ is the intersection
point between the circular arc centered at b and obstacle line segment s. If no intersection
occurs between the circular arc and obstacle line segment s, then the lower bound of θS

is given by point a of straight line segment abc′, where bc′ intersects with the endpoint of
obstacle line segment s farthest from point b.

For θC ∈ [α, φ2], the lower bound of θS is indicated by point a of straight line segment
abc′, where bc′ intersects with the endpoint of obstacle line segment s closest to point b (see
Figure 5d). Observe that the lower bound of θS is equivalent to θC when θC = φ2. A sketch
of the corresponding infeasible final configuration space is shown in Figure 6.

Case 2. Obstacle line segment s outside C and inside C ′. As depicted in Figure 7, we only
need to worry about computing the lower bound of θS for θC ∈ [φ1, φ2], given that the entire
negative half of the θS-range (i.e., [θC − cos−1 r/R, θC ]) is feasible for θC ∈ [0, φ1] ∪ [φ2, 2π).
The analysis is similar to Case 1 and thus omitted. A sketch of the corresponding infeasible
final configuration space is shown in Figure 8.
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Figure 6 Infeasible final configuration space due to an obstacle line segment s inside C.

2.4 Complexity and construction of the feasible trajectory space
The feasible trajectory space of the articulated probe is represented by Σfin \ (Σfin,forb ∪
Σfin,inf ). A set of lower- and upper-bound curves – σfin, σfin,forb, and σfin,inf – was
obtained from characterizing the final, forbidden final, and infeasible final configuration
spaces, respectively. Each of these curves is a function of θS – that is, θC(θS).

As illustrated in Figure 2, σfin contains two linearly increasing curves, θC = θS−cos−1 r/R

and θC = θS + cos−1 r/R, which are totally defined over θS ∈ [0, 2π). Each curve in σfin,forb

is partially defined, continuous, and monotone in θS . Specifically, as shown in Figure 3 & 4,
the curves in Case 1 are monotonically decreasing with respect to θS , and the curves in Case
2 are of zero slopes (i.e., of some constant θC). Furthermore, any two curves in Case 1 can
only intersect at most once. Likewise, each curve in σfin,inf is bounded and monotonically
increasing with respect to θS (see Figure 6 & 8). Any curve in σfin,inf can only intersect
with another at most once.

From the observations above, it can be easily deduced that the number of intersections
between any two curves in σ = σfin ∪ σfin,forb ∪ σfin,inf is at most one. In other words, the
curves of σ are essentially lines, line segments, or pseudo-line segments. For a set σ of O(n)
x-monotone Jordan arcs, bounded or unbounded, with at most c intersections per pair of
arcs (for some fixed constant c), the maximum combinatorial complexity of the arrangement
A(σ) is O(n2) [6].

An incremental construction approach, as detailed in [5], can be used to construct
arrangement A(σ) in O(n2α(n)) time using O(n2) space, where α(n) is the inverse Ackermann
function. By using topological sweep [1] in computing the intersections for a collection of
well-behaved curves (e.g., Jordan curves described above), the time and space complexities
can be improved to O(n logn+ k) and O(n+ k), respectively.

I Theorem 2.1. The feasible trajectory space of the articulated probe can be represented as a
simple arrangement of maximum combinatorial complexity k = O(n2) and can be constructed
in O(n logn+ k) time using O(n+ k) space.

Remark. The analytical approach above, with a slight change of parameterization and
some additional data structure, can be used to solve a special case of the circular sector
intersection query problem, and the result is summarized in Theorem 2.2.
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Figure 7 Infeasible final configurations due to an obstacle line segment s outside C and inside
C′. Illustration of θS-lower bound for (a) θC ∈ [φ1, φ2], (b) φ1 < θC < α, (c) θC = α, and (d)
α < θC < φ2.

I Theorem 2.2. A set P of n line segments in <2 can be preprocessed in O(n logn) time
into a data structure of size O(nα(n)) so that, for a query circular sector σ with a fixed
radius r and a fixed arc endpoint t, one can determine if σ intersects P in O(logn) time.
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Figure 8 Infeasible space due to a line segment s outside C and inside C′.

7 John Hershberger. Finding the upper envelope of n line segments in O(n log n) time.
Information Processing Letters, 33(4):169–174, 1989.

8 John Hopcroft, Deborah Joseph, and Sue Whitesides. Movement problems for 2-
dimensional linkages. SIAM Journal on Computing, 13(3):610–629, 1984.

9 Steven M LaValle. Planning algorithms. Cambridge University Press, 2006.
10 Micha Sharir and Pankaj K Agarwal. Davenport-Schinzel sequences and their geometric

applications. Cambridge University Press, 1995.


	Introduction
	Solution approach
	Final configuration space
	Forbidden final configuration space
	Infeasible final configuration space
	Complexity and construction of the feasible trajectory space


