
O-Hull Formation for Programmable Matter
Joshua J. Daymude1, Robert Gmyr2, Kristian Hinnenthal3, Irina
Kostitsyna4, Christian Scheideler3, and Andréa W. Richa1

1 Computer Science, CIDSE, Arizona State University, Tempe, AZ, USA
{jdaymude, aricha}@asu.edu

2 Department of Computer Science, University of Houston, Houston, TX, USA
rgmyr@uh.edu

3 Department of Computer Science, Paderborn University, Paderborn, Germany
{krijan, scheidel}@mail.upb.de

4 Department of Mathematics and Computer Science, TU Eindhoven, the
Netherlands
i.kostitsyna@tue.nl

1 Introduction

Research in self-organizing programmable matter is becoming increasingly popular in many
fields with potential for broad applications, for example, in nanomedicine. Imagine tiny
particles locating and repairing small wounds in the human body, or capturing harmful
cells and transporting them out of the body. In this context various problems such as
shape formation [6, 15, 10, 12], coating [7, 1], and shape recognition [9] have recently been
investigated under various theoretical models. Somewhat in between these lies the problem
of shape sealing, where the goal is to isolate an object by enclosing it with a shell of particles.

In this paper we study the problem of sealing a 2D object under the amoebot model [5, 4],
which models programmable matter as a collection of nanoscale agents (called particles) with
limited computational capabilities that move on a grid and can locally exchange information
in order to collectively achieve a given goal.

The Amoebot Model. In the amoebot model the underlying geometry is an infinite
triangular lattice G4 = (V, E). Each particle occupies either a single node in V (contracted
particle) or a pair of adjacent nodes in V (expanded particle). Particles move via a series of
expansions and contractions: a contracted particle can expand into an unoccupied adjacent
node, and contract into one of its nodes (see Fig. 1). Neighboring particles can coordinate
their movements in a handover, which can occur when: a contracted particle P “pushes” an
expanded neighbor Q by expanding into a node occupied by Q, forcing it to contract; or an
expanded particle Q “pulls” a contracted neighbor P by contracting, forcing P to expand
into the node it is vacating. Handovers help maintain the connectivity of the particle system.

The particles are assumed to be anonymous, with no global coordinate system or compass.
The only assumption is that the particles have a common chirality, which allows them to
number the incident edges in clockwise order.

We assume the standard asynchronous model of distributed computing (see, e.g., [11]). A
classical result under this model states that for any concurrent asynchronous execution of
atomic actions, there exists a sequential ordering of actions producing the same end result,
provided conflicts that arise in the concurrent execution are resolved. In the amoebot model,
an atomic action corresponds to a single particle activation in which a particle can perform
some computation involving its memory and the memories of its neighbors and at most one
expansion or contraction. Conflicts involving concurrent memory writes or simultaneous
particle expansions into the same unoccupied node are resolved arbitrarily such that at most
one particle is writing into a given memory location or expanding into a given node at a time.
35th European Workshop on Computational Geometry, Utrecht, The Netherlands, March 18–20, 2019.
This is an extended abstract of a presentation given at EuroCG’19. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

32:2 O-Hull Formation for Programmable Matter

Figure 1 Left: Expanded and contracted particles. Right: particles with edge numbering.

0
2
3

45

h5,0

h1,2

h2,3

h3,4

h4,5

1

h0,1

d4,5

d1,2

d3,4

d2,3d0,1

d5,0

Figure 2 Left: An example of an object S (highlighted in orange), enclosed by its strong O-hull
(solid line) and its O-hull (dashed line). Right: A particle’s local labeling of the six half-planes
composing the strong O-hull; D = {2, 2, 4, 3, 2, 2}.

While in reality many particles may be active concurrently, when analyzing our algorithms it
suffices to consider a sequence of activations where only one particle is active at a time. We
assume the activation sequence is fair : any particle P will be activated at some future time.
An asynchronous round is complete once all particles have been activated at least once.

Problem Description. Shape sealing in two dimensions reduces to enclosing an object in a
cycle. To optimize the number of particles needed to seal an object, we study the problem of
particles forming a convex hull. The amoebot model limits the movement of the particles to
three directions, thus we build a restricted-orientation hull, or an O-hull, of a given object.

The notions of O-convexity and an O-hull were introduced by Rawlins [14] (see also [8]).
Given a set of fixed orientations O, a set is O-convex if its intersection with any line with one
of the orientations in O is connected. An O-hull of a given set S is defined as an intersection
of all O-convex sets containing S. Furthermore, a strong O-hull of S is an intersection of all
half-planes bounded by lines with orientations in O and containing S. In our case O consists
of three orientations of the axes of the triangular grid G4.

Let S be a simply-connected subgraph of G4, and P be a connected system of initially
contracted amoebot particles on G4 (non-overlapping with S). The shape sealing problem
is to reconfigure P within G4\S so that every node of the O-hull of S is occupied by a
contracted particle. Note that as the particles are not allowed to occupy the nodes of S, the
hull that will be constructed by P will in fact be the offset-by-one O-hull of S (see Fig. 2
(left)). Nevertheless, to simplify the exposition, we will refer to it using the same term O-hull.
We further assume that P has enough particles to form an O-hull, that it contains a unique
leader particle1 ` initially adjacent to S, and that S does not contain any tunnels of width 1

1 Such a particle can be determined in O(|P|) asynchronous rounds with high probability using a slightly
modified version of the leader election algorithm of [3].

J. J. Daymude, R. Gmyr, K. Hinnenthal, I. Kostitsyna, C. Scheideler, and A. W. Richa 32:3

Figure 3 A particle (black dot) estimates strong O-hull (black) after having traversed the dotted
path from its starting point (black circle). Left: dh ≥ 1 for all h ∈ H, the next move does not push
any half-plane. Middle: d1,2 = 0. Right: Half-plane d1,2 has been pushed.

(that is, G4\S is 2-connected).
We present a fully distributed, local algorithm for the shape sealing problem that runs in

O(B +H) asynchronous rounds, where B is the perimeter of S, and H is the perimeter of the
O-hull of S. We present the algorithm in three parts: we first describe how a single particle
with unbounded memory can find the strong O-hull using a simple geometric observation.
The main difficulty of our result lies in emulating the single-particle algorithm with a system
of bounded-memory particles. The final part, converting the strong O-hull into the O-hull,
is rather straightforward: all particles at the convex vertices that are not adjacent to S can
move inside thus “deflating” the strong O-hull towards the O-hull; after additional O(H)
asynchronous rounds the O-hull is achieved. In the rest of this extended abstract we present
the first two parts of the algorithm. Due to space constraints, we omit the proofs of the
theorems, which can be found in the full version of this paper [2].

2 Single Particle Algorithm

Consider a single particle P with unbounded memory. Let P be initially placed somewhere
adjacent to S. The main idea of this algorithm is to let P traverse the boundary of S

clockwise, while internally maintaining a representation of the strong O-hull. The strong
O-hull can be represented with six half-planes H = {h0,1, h1,2, . . . , h5,0}, which P can label
clockwise (in Fig. 2 (right)). Particle P computes the locations of these half-planes by
maintaining six counters D = {dh : h ∈ H}, where dh holds the distance from P to the line
supporting h. If one of these counters is 0, P is on the current estimate of the strong O-hull.

Counters initially are set to 0. As P moves, it always stays parallel to two half-planes;
their counters do not get updated. For two other half-planes P gets further away; their
counters get incremented. For each of the remaining two half-planes, P either moves closer
to it (if its counter was > 0) or steps outside of the half-plane (if the counter was = 0). In
the former case the counter gets decremented, in the latter case the counter does not get
updated which corresponds to a half-plane getting “pushed”. Refer to Fig. 3 for an example.

Finally, P needs to detect when it has computed the strong O-hull. To do so, it stores six
terminating bits {bh : h ∈ H}, where bh = 1 if P has visited the line supporting half-plane
h since it last pushed any half-plane, and bh = 0 otherwise. Whenever P moves without
pushing a half-plane, for each h with dh = 0 it sets bh to 1. Otherwise, when P pushes a
half-plane, it sets bh to 0 for all h. If after a move all six terminating bits are 1, P contracts
and terminates.

EuroCG’19

32:4 O-Hull Formation for Programmable Matter

I Theorem 2.1. The single-particle algorithm terminates after O(B) asynchronous rounds
with particle P holding the correct representation of the strong O-hull in the six counters D.

3 The Strong O-hull Algorithm

Next we show how a system of n particles each with only constant-size memory can emulate
the single-particle algorithm. The leader particle ` of P is primarily responsible for emulating
the particle with unbounded memory in the single-particle algorithm. To do so, it utilizes
the other particles in the system as distributed memory. More precisely, as ` moves, it will
create a chain of particles behind it that will be used to store the distances dh from ` to the
lines supporting half-planes h as binary counters. Once these measurements are complete, `

uses them to lead the other particles in forming the O-hull.

A Binary Counter of Particles. We build upon an increment-only binary counter under
the amoebot model [13]. Suppose that the participating particles are organized as a simple
chain with the leader at its front. Each particle P has a bit value P.bit, that can be empty if
P is not part of the counter. A final token f is held by a particle marking the end of the
counter. Then the counter value is represented by the bits of the particles from ` (holding
the least significant bit) up to the particle holding the token f .

The leader ` initiates counter operations, and the rest of the particles carry these
operations out. To increment (decrement) the counter, the leader ` generates an increment
token c+ (decrement token c−). The tokens are consumed or passed along the chain (as a
carry bit) while updating the bits of the particles accordingly until they are consumed. To
test whether the counter is 0, the leader checks the status of its follower counter particle P1.
If P1 is holding a decrement token c− and P1.bit = 1, ` cannot conclusively test whether the
counter’s value is 0. Otherwise, the counter value is 0 if and only if `.bit = 0, P1 is holding
the final token f , and P1 is not holding an increment token c+.

The proof of the following theorem is rather involved, we omit it due to space constraints.

I Theorem 3.1. Given any fair asynchronous activation sequence of the particles, and any
nonnegative sequence of m operations, the distributed binary counter correctly processes all
operations in O(m) asynchronous rounds.

3.1 Estimating the Strong O-Hull

We now combine the movement rules of the single-particle algorithm with our distributed,
multi-particle binary counter to enable the leader to compute the strong O-hull of S.

First, using the spanning tree primitive (see, e.g., [7]), a spanning tree is constructed on
the particle system rooted at the leader `. Each activated particle P , if it has a neighbor Q

already in the tree, becomes a follower and sets P.parent to Q. Note that the leader can
immediately begin estimating the strong O-hull without waiting for the entire tree to form.

The first few followers of ` form a counter chain and store six counters dh in a distributed
fashion. Imitating the single-particle algorithm, ` performs a clockwise traversal of the
boundary of S using the right-hand rule, updating its counters along the way. It terminates
once it has moved in all six directions without pushing a half-plane, which it detects using
its six terminating bits bh. In the multi-particle setting, we need to carefully consider both
how ` interacts with its followers as it moves and how it updates its counters.

J. J. Daymude, R. Gmyr, K. Hinnenthal, I. Kostitsyna, C. Scheideler, and A. W. Richa 32:5

P0P1P2

P3

Q1

P4P5P6

Figure 4 The leader P0 and its followers. Followers with dots are on the counter, and P6 holds
the final token. Particle Q1 cannot handover with P3, while all other potential handovers are safe.

Rules for Distributed Counters. The increment and decrement tokens are handled as
described above. However, as at the beginning the particles form a tree, and not a simple
path, we enforce that the counters are only extended along followers on the object’s boundary.

As there may be role-swaps of the leader ` (described below), to maintain connectivity of
the counters we modify them to store two bits per particle. Then if a role-swap occurs, the
counter bits will need to be shifted towards the leader to keep all the bits of the particles
closest to ` “full”. This can be easily achieved by passing the bit value when a counter
particle P detects that there is a bit value missing in the memory of its parent P.parent.

Rules for Leader Computation and Movement. First suppose ` is contracted. If all its
terminating bits bh = 1, then ` has computed the strong O-hull. Else, if the zero-test
operation is unavailable on any of the counters, ` skips its turn; otherwise, ` will attempt
to expand into the node v along the boundary of S. If v is unoccupied, or is occupied by
an expanded particle, ` calculates the updated distances D, generates the corresponding
increment/decrement tokens and expands into v. If v is occupied by a contracted particle
P , ` will have to initiate a role-swap with P , such that P becomes the new leader and `

becomes its follower (the second particle in the counter). This is allowed only if ` has its
both bit values full, or if it is holding a final token fh. In the former case ` passes the value
only of one least significant bit to P (this is where the two bits are used to maintain the
connectivity), and in the latter case ` passes a bit (if it exists) and the final token to P . It
also updates its terminating bits bh for all h ∈ H.

Finally, if ` is expanded, let P be its follower child emulating bits of the counters. Then
if P is contracted, ` pulls P in a handover.

Rules for Follower Movement. For any follower P , if it is expanded and has no children in
the spanning tree nor any non-tree neighbor, then it simply contracts. If P is contracted and
is following the tail of its expanded parent Q = P.parent, then P pushes Q in a handover.
Similarly, if P is expanded and has a contracted child Q, P pulls Q in a handover. However,
we do not allow handovers that may disconnect the counters (see Fig. 4).

Once the counters contain an accurate representation of the strong O-hull, the leader
` can simply lead the particle system in tracing it out by traversing the strong O-hull in
clockwise order. While moving along the strong O-hull, ` uses its distributed counters to
detect when it reaches a vertex of the strong O-hull, at which point it turns 60◦ to follow
the next half-plane, and so on. The movement rules for the leader and the followers in this

EuroCG’19

32:6 O-Hull Formation for Programmable Matter

phase are very similar to those of the previous phase. With some careful analysis we can
show the following theorem.

I Theorem 3.2. The presented algorithm solves the strong O-hull formation problem for an
object S in O(B + H) asynchronous rounds in the worst case.

Acknowledgments. Joshua J. Daymude and Andrá W. Richa are supported in part by NSF
Awards CCF-1637393 and CCF-1733680.

References
1 J. J. Daymude, Z. Derakhshandeh, R. Gmyr, A. Porter, A. W. Richa, C. Scheideler, and

T. Strothmann. On the runtime of universal coating for programmable matter. Natural
Computing, 17(1):81–96, 2018.

2 J. J. Daymude, R. Gmyr, K. Hinnenthal, I. Kostitsyna, C. Scheideler, and A. W. Richa.
Convex hull formation for programmable matter. Available on arXiv, 2018.

3 J. J. Daymude, R. Gmyr, A. W. Richa, C. Scheideler, and T. Strothmann. Improved
leader election for self-organizing programmable matter. In Algorithms for Sensor Systems
(ALGOSENSORS), pages 127–140, 2017.

4 J. J. Daymude, A. W. Richa, and C. Scheideler. The amoebot model. Available online at
https://sops.engineering.asu.edu/sops/amoebot, 2017.

5 Z. Derakhshandeh, S. Dolev, R. Gmyr, A. W. Richa, C. Scheideler, and T. Strothmann.
Brief announcement: Amoebot - a new model for programmable matter. In Proc. 26th
ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), pages 220–222,
2014.

6 Z. Derakhshandeh, R. Gmyr, A. W. Richa, C. Scheideler, and T. Strothmann. Universal
shape formation for programmable matter. In Proc. 28th Annual ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA), pages 289–299, 2016.

7 Z. Derakhshandeh, R. Gmyr, A. W. Richa, C. Scheideler, and T. Strothmann. Universal
coating for programmable matter. Theoretical Computer Science, 671:56–68, 2017.

8 E. Fink and D. Wood. Restricted-Orientation Convexity. Monographs in Theoretical Com-
puter Science. An EATCS Series. Springer-Verlag Berlin Heidelberg, 2004.

9 R. Gmyr, K. Hinnenthal, I. Kostitsyna, F. Kuhn, D. Rudolph, and C. Scheideler. Shape
Recognition by a Finite Automaton Robot. In Proc. 43rd International Symposium on
Mathematical Foundations of Computer Science (MFCS), volume 117 of Leibniz Interna-
tional Proceedings in Informatics (LIPIcs), pages 52:1–52:15, 2018.

10 F. Hurtado, E. Molina, S. Ramaswami, and V. Sacristán. Distributed reconfiguration of
2D lattice-based modular robotic systems. Autonomous Robots, 38(4):383–413, 2015.

11 N. Lynch. Distributed Algorithms. Morgan Kauffman, 1996.
12 M. J. Patitz. An introduction to tile-based self-assembly and a survey of recent results.

Natural Computing, 13(2):195–224, 2014.
13 A. Porter and A. W. Richa. Collaborative computation in self-organizing particle systems.

In Proc. 17th International Conference on Unconventional Computing and Natural Com-
putation (UCNC), 2018.

14 G. J. E. Rawlins. Explorations in Restricted Orientation Geometry. PhD thesis, University
of Waterloo, 1987. AAI0561642.

15 D. Woods, H.-L. Chen, S. Goodfriend, N. Dabby, E. Winfree, and P. Yin. Active self-
assembly of algorithmic shapes and patterns in polylogarithmic time. In Proc. 4th Confer-
ence on Innovations in Theoretical Computer Science (ITCS), pages 353–354, 2013.

https://sops.engineering.asu.edu/sops/amoebot

	Introduction
	Single Particle Algorithm
	The Strong O-hull Algorithm
	Estimating the Strong O-Hull

