
Encoding 3SUM
Sergio Cabello1, Jean Cardinal2, John Iacono2,3,
Stefan Langerman2, Pat Morin4, and Aurélien Ooms2

1 University of Ljubljana
2 Université libre de Bruxelles
3 New York University
4 Carleton University

Abstract
We consider the following problem: given three sets of real numbers, output a word-RAM data
structure from which we can efficiently recover the sign of the sum of any triple of numbers,
one in each set. This is similar to a previous work by some of the authors to encode the order
type of a finite set of points. While this previous work showed that it was possible to achieve
slightly subquadratic space and logarithmic query time, we show here that for the simpler 3SUM
problem, one can achieve an encoding that takes Õ(N 3

2) space for inputs sets of size N and
allows constant time queries in the word-RAM.

1 The Problem

Given three sets of N real numbers A = { a1 < a2 < · · · < aN }, B = { b1 < b2 < · · · < bN },
and C = { c1 < c2 < · · · < cN }, we wish to build a discrete data structure (using bits, words,
and pointers) such that, given any triple (i, j, k) ∈ [N]3 it is possible to compute the sign of
ai+ bj + ck by only inspecting the data structure (we cannot consult A, B, or C). We refer to
the map χ : [N]3 → {−, 0,+}, (i, j, k) 7→ sgn(ai + bi + ck) as the 3SUM-type of the instance
〈A,B,C〉. Obviously, one can simply construct a lookup table of size O(N3), such that triple
queries can be answered in O(1) time. We aim at improving on this trivial solution.

2 Motivation

In the 3SUM problem, we are given an array of numbers as input and are asked whether any
three of them sum to 0. In the mid-nineties, this problem was identified as a bottleneck of
many important problems in geometry, such as detection of affine degeneracies or motion
planning [5]. Since then, it has become a central problem in fine-grained complexity theory [9].
It has long been conjectured to require Ω(N2) time. In 2014, it was shown to be solvable in
o(N2) time, but no algorithm with running time O(N2−δ) with constant δ > 0 is known [7].

Lower bounds exist in restricted models of computation. Most notably, Ω(N2) 3-linear
queries are needed to solve 3SUM [4], and nontrivial lower bounds have also been proven
for slightly more powerful linear decision trees [1]. However, in a recent breakthrough
contribution, Kane, Lovett, and Moran showed that 3SUM could be solved using O(N log2N)
6-linear queries [8], hence within a O(logN) factor of the information-theoretic lower bound.

Linear decision trees are examples of nonuniform algorithms, in which we are allowed to
have different algorithms for different input sizes. Algebraic decision trees generalize linear
decision trees by allowing decision based on the sign of constant-degree polynomials at each
node [10].

Any decision tree identifying the 3SUM-type of a 3SUM instance yields a concise encoding
of this 3SUM-type: just write down the outcome of the successive tests. Knowing the decision
tree by convention, this sequence of bits is sufficient to recover the sign of any triple.
35th European Workshop on Computational Geometry, Utrecht, The Netherlands, March 18–20, 2019.
This is an extended abstract of a presentation given at EuroCG’19. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

30:2 Encoding 3SUM

Table 1 Table of results

Query time Space (in bits) Preprocessing time
Trivial O(1) O(N3) O(N3)

Almost trivial O(1) O(N2 logN) O(N2)
Order-type encoding [2] O(logN) O(N

2 log2 logN
logN) O(N2)

Order-type encoding [2] O(logN
log logN) O(N2

log1−εN
) O(N2)

Numeric representation (§4) O(N) O(N2) NO(1)

Space-optimal representation (§5) NO(1) O(N logN) NO(1)

Query-optimal (§6) O(1) Õ(N1.5) O(N2)

The question we consider here is how to make such a representation efficient, in the
sense that not only does it use merely a few bits, but the answer to any triple query can be
recovered efficiently. Understanding the interplay between nonuniform algorithms and such
data structures hopefully sheds light on the intrinsic structure of the problem.

3 Results

See table 1 for a summary. As there are only O(N3) queries, a table of size (log2 3)N3 +O(1)
bits suffices to give constant query time [3]. This can be improved to O(N2 logN) bits of
space by storing for each pair (i, j) the values k<(i, j) = max{0} ∪ {k : ai + bj + ck < 0} and
k>(i, j) = min{N + 1} ∪ {k : ai + bj + ck > 0}. For a query (i, j, k), we compare k against
the values k<(i, j) and k>(i, j) to recover χ(i, j, k) in O(1) time. All k<(i, j) and k>(i, j)
can be computed in O(N2) time via the classic quadratic time algorithm for 3SUM.

One seemingly simple representation is to store the numbers in A, B and C; however
these are reals and thus we need to make them representable using a finite number of bits.
In Section 4 we show that a minimal integer representation of a 3SUM instance may require
Θ(N) bits per value, which would give rise to a O(N) query time and O(N2) space, which is
far from impressive. In [2] the problem of given a set of N lines, to create an encoding of
them so that the orientation of any triple (the order type) can be determined was studied;
our problem is a special case of this where the lines only have three slopes. Can we do better
for the case of 3SUM? We answer this in the affirmative. In Section 5 we show how to use
an optimal O(N logN) bits of space with a polynomial query time. Finally, in section 6 we
show how to use Õ(N1.5) space to achieve O(1)-time queries.

4 Representation by numbers

A first natural idea is to encode the real 3SUM instance by rounding its numbers to integers.
We show a tight bound of Θ(N2) bits for this representation.

I Lemma 4.1. Every 3SUM instance has an equivalent integer instance where all values
have absolute value at most 2O(N). Furthermore, there exists an instance of 3SUM where all
equivalent integer instances require numbers at least as large as the N th Fibonacci number
and where the standard binary representation of the instance requires Ω(N2) bits.

Proof. Every 3SUM instance A = { a1 < a2 < . . . < aN }, B = { b1 < b2 < · · · < bN }, and
C = { c1 < c2 < · · · < cN } can be interpreted as the point (a1, . . . , aN , b1, . . . , bN , c1, . . . , cN)
in R3N . Let us use the variables x1, . . . , xN to encode the first N dimensions of R3N ,

S. Cabello et al. 30:3

y1, . . . , yN to encode the next N dimensions, and z1, . . . , zN for the remaining dimensions.
Consider the subset of R3N

∆ = {(x1, . . . , xN , y1, . . . , yN , z1, . . . , zN) | xi < xi+1, yj < yj+1, zk < zk+1 ∀i, j, k ∈ [N−1]}

and the set Π of N3 hyperplanes xi+yj+zk = 0, where i, j, k ∈ [N]. Let A be the arrangement
defined by Π inside ∆. Instances of 3SUM correspond to points in ∆. Moreoever, two 3SUM
instances have the same 3SUM-type if and only if they are in the same cell of A.

Consider an instance 〈A,B,C〉 and let σ = σ(A,B,C) be the cell of A that contains it.
Then σ is the cell defined by the inequalities

∀i, j, k ∈ [N] :

xi + yj + zk > 0 if χ(i, j, k) = +1,
xi + yj + zk = 0 if χ(i, j, k) = 0,
xi + yj + zk < 0 if χ(i, j, k) = −1.

∀i, j, k ∈ [N − 1] :

xi − xi+1 < 0,
yj − yj+1 < 0,
zk − zk+1 < 0.

Let σ′ be the subset of R3N defined by the following inequalities:

∀i, j, k ∈ [N] :

xi + yj + zk ≥ 1 if χ(i, j, k) = +1,
xi + yj + zk = 0 if χ(i, j, k) = 0,
xi + yj + zk ≤ −1 if χ(i, j, k) = −1.

∀i, j, k ∈ [N − 1] :

xi − xi+1 ≤ 1,
yj − yj+1 ≤ 1,
zk − zk+1 ≤ 1.

Clearly σ′ is contained in σ. Moreover, for a sufficiently large λ > 0 the scaled instance
〈λA, λB, λC〉 belongs to σ′. Therefore, σ′ is nonempty.

Since σ′ is defined by a collection of linear inequalities defining closed halfspaces, there
exists a point p in σ′ defined by a subset of at most 3N inequalities, where the inequalities
are actually equalities. Let us assume for simplicity that exactly 3N equalities define the
point p. Then, p = (x, y, z) is the solution to a linear system of equations M [x y z]T = δ

where M and δ have their entries in {−1, 0, 1} and each row of M has at most three non-zero
entries. The solution p to this system of equations is an instance equivalent to 〈λA, λB, λC〉.

Because of Cramer’s rule, the system of linear equations has solution with entries
det(Mi)/det(M), where Mi is the matrix obtained by replacing the ith column of M by δ.
We use the following simple bound on the determinant. Since det(M) =

∑
π sgn(π)

∏
imi,π(i),

where π iterates over the permutations of [3N], there are at most 33N summands where
π gives non-zero product

∏
imi,π(i) (we have to select one non-zero entry per row), and

the product is always in {−1, 0, 1}. Therefore | det(M)| ≤ 33N . Similarly, | det(Mi)| ≤ 43N

because each row of Mi has at most 4 non-zero entries. We conclude that the solution to the
system M [x y z]T = δ are rationals that can be expressed with O(N) bits. This solution
gives a 3SUM instance with rationals that is equivalent to 〈A,B,C〉. Since all the rationals
have the common denominator (det(M)), we can scale the result by det(M) and we get an
equivalent instance with integers, where each integer has O(N) bits.

EuroCG’19

30:4 Encoding 3SUM

The proof of the second statement is by implementing the Fibonacci recurrence in each
of the arrays A,B,C. This can be achieved by letting:

ai + b1 + cN−i+1 = 0, for i ∈ [N]
a1 + bi + cN−i+1 = 0, for i ∈ [N]

ai−1 + bi−2 + cN−i+1 < 0, for i ∈ {3, 4, . . . , N},

The first two sets of equations ensure that the two arrays A and B are identical, while the
array C contains the corresponding negated numbers, in reverse order. From the inequalities
in the third group, and depending on the choice of the initial values a1, a2, each array contains
a sequence growing at least as fast as the Fibonacci sequence. J

Note that this is a much smaller lower bound than for order types of points sets in the
plane, the explicit representation of which can be shown to require exponentially many bits
per coordinate [6].

5 Space-optimal representation

By considering the arrangement of hyperplanes defining the 3SUM problem, we get an
information-theoretic lower bound on the number of bits in a 3SUM-type.

I Lemma 5.1. There are 2Θ(N logN) distinct 3SUM-types of size N .

Proof. 3SUM-types of size N are in one-to-one correspondence with cells of the arrangement
of N3 hyperplanes in R3N . The number of such cells is O(N9N) and at least (N !)2. J

In order to reach this lower bound, we can simply encode the label of the cell of the
arrangement in Θ(N logN) bits. However, decoding the information requires to construct
the whole arrangement which takes NO(N) time. An alternative solution is to store a vertex
of the arrangement of hyperplanes ai + bj + ck ∈ {−1, 0, 1 }. There exists such a vertex
that has the same 3SUM-type as the input point, as shown in the proof of Lemma 4.1. To
answer any query, either recompute the vertex from the basis then answer the query using
arithmetic, or use linear programming. Hence we can build a data structure of O(N logN)
bits such that triple queries can be answered in polynomial time.

Note that we do not exploit much of the 3SUM structure here. In particular, the same
essentially holds for k-SUM, and can also be generalized to a Subset Sum data structure of
O(N2) bits, from which we can extract the sign of the sum of any subset of numbers.

6 Subquadratic space and constant query time

Our encoding is inspired by Grønlund and Pettie’s Õ(N1.5) non-uniform algorithm for
3SUM [7]. Our data structure stores three components, which we call the differences, the
staircase and the square neighbors.

Differences. Partition A and B into blocks of
√
N consecutive elements. Let D be the set

of all differences of the form ai − aj and bk − b` where the items come from the same
block. There are O(N1.5) such differences. Sort D and store a table indicating for each
difference in D its rank among all differences in D. This takes O(logN) bits for each of
the O(N1.5) differences, for a total of O(N1.5 logN) bits.

S. Cabello et al. 30:5

1 2 10 14 17 22 32 33 40 91 92 97 98 110 120 127
1 2 3 11 15 18 23 33 34 41 92 93 98 99 111 121 128
11 12 13 21 25 28 33 43 44 51 102 103 108 109 121 131 138
13 14 15 23 27 30 35 45 46 53 104 105 110 111 123 133 140
19 20 21 29 33 36 41 51 52 59 110 111 116 117 129 139 146
24 25 26 34 38 41 46 56 57 64 115 116 121 122 134 144 151
34 35 36 44 48 51 56 66 67 74 125 126 131 132 144 154 161
51 52 53 61 65 68 73 83 84 91 142 143 148 149 161 171 178
57 58 59 67 71 74 79 89 90 97 148 149 154 155 167 177 184
59 60 61 69 73 76 81 91 92 99 150 151 156 157 169 179 186
114 115 116 124 128 131 136 146 147 154 205 206 211 212 224 234 241
119 120 121 129 133 136 141 151 152 159 210 211 216 217 229 239 246
127 128 129 137 141 144 149 159 160 167 218 219 224 225 237 247 254
128 129 130 138 142 145 150 160 161 168 219 220 225 226 238 248 255
133 134 135 143 147 150 155 165 166 173 224 225 230 231 243 253 260
138 139 140 148 152 155 160 170 171 178 229 230 235 236 248 258 265
142 143 144 152 156 159 164 174 175 182 233 234 239 240 252 262 269

Figure 1 Illustration of the staircase and square neighbors of the constant query time encoding.
Here the 16 × 16 table is partitioned into a 4 × 4 grid of squares of size 4 × 4. If ck = 100, the grey
illustrates the squares that form the staircase, containing values both larger and smaller than 100.
Predecessors and successors within each staircase square are shown in red and blue.

Staircase. Look at the table G formed by all sums of the form ai + bj , which is monotonic in
its rows and columns due to A and B being sorted and view it as being partitioned into
a grid G′ of size

√
N ×

√
N where each square of the grid is also of size

√
N ×

√
N . For

each element c ∈ C, for each i ∈ [1,
√
N] we store the largest j such that some elements

of the square G′[i, j] are < c, denote this as V [c, i]. We also store, for each c ∈ C, for
each j ∈ [1,

√
N] the smallest i such that some elements of the square G′[i, j] are ≥ c,

denote this as H[c, j]. We thus store, in V and H,
√
N values of size O(logN) for each

of the N elements of C, for a total space usage of O(N1.5 logN) bits. We call this the
staircase as this implicitly classifies, for each c ∈ C, whether each square has elements
larger than c, smaller than c, or some larger and some smaller; only O(

√
N) can be in

the last case, which we refer to as the staircase of c.

Square neighbors. For each element c ∈ C, for each of the O(
√
N) squares on the staircase,

we store the location of the predecessor and successor of c in the squares G′[i, V [c, i]] and
G′[H[c, j], j], for i, j ∈ [1,

√
N]. This takes space O(N1.5 logN).

To execute a query (ai, bj , ck), only a constant number of lookups in the tables stored
are needed. If j <

√
N ·H[k, i], then we know ai + bj > ck. If i >

√
N · V [k, j], then we

know ai + bj < ck. If neither of these is true, then the square G′[di/
√
Ne, dj/

√
Ne] is on the

staircase of ci and thus using the square neighbors table we can determine the location of
the predecessor and successor of ck in this square; suppose they are at G[si, sj] and G[pi, pj]
and thus G[si, sj] ≤ ck ≤ G[pi, pj]. One need only determine how these two compare to
G[i, j] = ai + bj to answer the query. But this can be done using the differences as follows:
to compare G[si, sj] to G[i, j] this would be determining the sign of (ai + bj)− (asi + bsj)
which is equivalent to determining the result of comparing ai − asi and bj − bsj , which since
both are in the same square, these differences are in D and the comparison can be obtained
by examining their stored ranks. By doing this for the predecessor and successor we will
determine the relationship between ai + bj and ck.

EuroCG’19

30:6 REFERENCES

References

1 Nir Ailon and Bernard Chazelle. Lower bounds for linear degeneracy testing. J. ACM,
52(2):157–171, 2005.

2 Jean Cardinal, Timothy M. Chan, John Iacono, Stefan Langerman, and Aurélien Ooms.
Subquadratic encodings for point configurations. In Symposium on Computational
Geometry, volume 99 of LIPIcs, pages 20:1–20:14. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, 2018.

3 Yevgeniy Dodis, Mihai Patrascu, and Mikkel Thorup. Changing base without losing
space. In Proceedings of the 42nd ACM Symposium on Theory of Computing, STOC
2010, Cambridge, Massachusetts, USA, 5-8 June 2010, pages 593–602, 2010.

4 Jeff Erickson. Lower bounds for linear satisfiability problems. Chicago J. Theor. Comput.
Sci., 1999.

5 Anka Gajentaan and Mark H. Overmars. On a class of O(n2) problems in computational
geometry. Comput. Geom., 5:165–185, 1995.

6 Jacob E. Goodman, Richard Pollack, and Bernd Sturmfels. Coordinate representation of
order types requires exponential storage. In STOC, pages 405–410. ACM, 1989.

7 Allan Grønlund and Seth Pettie. Threesomes, degenerates, and love triangles. J. ACM,
65(4):22:1–22:25, 2018.

8 Daniel M. Kane, Shachar Lovett, and Shay Moran. Near-optimal linear decision trees for
k-sum and related problems. In STOC, pages 554–563. ACM, 2018.

9 Mihai Patrascu and Ryan Williams. On the possibility of faster SAT algorithms. In
Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2010, Austin, Texas, USA, January 17-19, 2010, pages 1065–1075, 2010.

10 J. Michael Steele and Andrew Yao. Lower bounds for algebraic decision trees. J.
Algorithms, 3(1):1–8, 1982.

	1 The Problem
	2 Motivation
	3 Results
	4 Representation by numbers
	5 Space-optimal representation
	6 Subquadratic space and constant query time

