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Abstract
We consider the following generalization of simplicial depth: for a set of n data points P and a
set of k query points Q, the simplicial depth of Q with respect to P is the number of simplices
spanned by P that contain at least one point of Q. We study this generalization for point sets
in the plane. For two query points we give bounds on the maximal simplicial depth, as well as
an O(n log(n)) time algorithm to compute the simplicial depth. For a general number of query
points we prove a bound on on the maximal simplicial depth if the data point set is in convex
position. Finally, we give an O((n+k)7/3polylog(n+k)) time algorithm to compute the simplicial
depth of arbitrary query point sets with respect to arbitrary data point sets.

1 Introduction

Suppose we are given a set of n data points in Rd, which we would like to represent with just a
few points. For just one representative in R1, this could be the median. One way to view the
median is as the “deepest” point in the set of data points. Given a set P = {p1, . . . , pn} ⊆ R1

of n reals, it is quite intuitive to formalize a notion of “depth” w.r.t. P (the data points): for
a given q ∈ R, we merely count how many points of P are on each side of q and take the
minimum of these two numbers. Then finding the median equals finding a point of maximal
depth. Defining higher-dimensional medians requires to generalize not only the median itself,
but the entire notion of depth. Several such depth measures have been introduced over time,
most famously Tukey depth [21] (also called halfspace depth), simplicial depth [18], or convex
hull peeling depth [5]; see, e.g., the survey by Aloupis [3]. Here, we consider simplicial depth:

I Definition 1.1 (Simplicial depth). For a finite point set P ⊂ Rd and a query point q, the
simplicial depth σP (q) is the number of open simplices with d+ 1 vertices in P that contain q.

The definition is attributed to Liu [18]1; however, special cases were also addressed prior
to her article (e.g., already in 1955 by Kárteszi [14]). In R2, Boros and Füredi [7] showed that
for any set P of size n in general position there exists a point q with σP (q) ≥ n3/27 +O(n2),
and there are sets where every point has simplicial depth of at most n3/27 + n2. Clearly,
for n points in general position, not all triangles can hit a single point. The simplicial
depth cannot be more than
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2 e
3
)

= n3

24 −
n
6 , and there are sets that allow for

∗ Supported by a Schrödinger fellowship of the Austrian Science Fund (FWF): J-3847-N35.
1 While in [18] the simplices are closed, we follow, e.g., [7, 10, 13, 16] and consider them open. Still, this

will not make a significant difference herein, as we usually require the sets to be in general position.
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such a depth [7]. From an algorithmic point of view, Gil, Steiger, and Wigderson [13] and,
independently, Khuller and Mitchell [17] showed that in R2 the simplicial depth of a query
point can be computed in O(n log(n)) time and that all simplicial depths of the points in
P can be found in O(n2) time. For the simplicial depth of a query point in R3 and R4,
Cheng and Ouyang [9] found O(n2) and O(n4) time algorithms, respectively. Improving on a
previous general O(nd log(n)) time bound by Afshani, Sheehy, and Stein [1], Pilz, Welzl and
Wettstein [20] gave an O(nd−1) time algorithm for all d ≥ 3. The problem is #P-complete
and W[1]-hard if the dimension is part of the input [1]. The best known algorithm for finding
a point with maximal simplicial depth in a given set in R2 takes O(n4) time [4].

In this work, we consider the use of multiple query points q1, . . . , qk, instead of just one.
The idea is to find a higher-dimensional analogue to quantiles, which further describe samples
in R1. So we extend the definition by replacing the query point q by any of the points
qi, i ∈ {1, . . . , k}. That is, we count the simplices containing at least one of the query points.

I Definition 1.2 (Simplicial depth of multiple query points). Let P ⊂ Rd and Q ⊂ Rd be two
finite point sets. Then the simplicial depth of Q with respect to P is σP (Q), the number of
open simplices with d + 1 vertices in P that contain at least one point q ∈ Q. A simplex
that contains at least one of the query points Q hits Q.

Indeed, the two query points that maximize the simplicial depth for a one-dimensional
data set are the 1/3 and 2/3-quantiles, which accounts for this way of generalization. The
idea of generalizing quantiles by generalizing depth measures to several query points has
already been considered for the Tukey depth [19].

The problem of stabbing triangles spanned by a point set was studied by Katchalski
and Meir [16], as well as Czyzowicz, Kranakis and Urrutia [10], who independently proved
that, for an n-point set P with h extreme points, 2n− 2− h many points are sufficient and
necessary to stab every triangle spanned by P (i.e., to have simplicial depth of

(
n
3
)
).

2 Two query points

In this section we focus on finite point sets P and two query points q1, q2 in the plane. We
assume that all points in P ∪Q are in general position, i.e., no three points are collinear.

2.1 Computing the depth of two query points
We argue that computing the simplicial depth of two query points is also in O(n logn).
W.l.o.g., assume that the query points lie on the x-axis and that q1 has a smaller x-coordinate
than q2. Rather than computing the simplicial depth directly, we consider all

(
n
3
)
simplices

and subtract the number of those which do not hit the query points.
We partition P = U ∪̇L, where U and L are the points above and below the x-axis,

respectively. We thus have
(|U |

3
)
triangles above and

(|L|
3
)
below the x-axis. The triangles

intersecting the x-axis have one vertex on one side and two on the other side. For each point
p ∈ L, let sR(p) be the number of points in U to the right of the line pq2, let sL(p) be the
number of points in U the left of pq1, and let sB(p) = |U | − sL(p)− sR(p). For a point p ∈ U
the functions are defined analogously with the roles of L and U swapped. Thus, we get

σP (q1, q2) =
(
|P |
3

)
−
(
|U |
3

)
−
(
|L|
3

)
−
∑
p∈P

[(
sR(p)

2

)
+
(
sB(p)

2

)
+
(
sL(p)

2

)]
. (1)

It remains to compute the values of sL and sR efficiently. To this end, we first sort the
points radially around q1 and q2 in O(n logn) time. Then, for each point p ∈ U , we can
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count the points of L to the left of q1p in overall O(n) time, by considering the points in
clockwise order around q1 and maintaining this number (i.e., starting with |L|, decreasing
the number when reaching a point of L, and storing it when reaching a point of U). We thus
obtain a table for sR for all points in U , and do the analogous for the remaining values.

2.2 Bounds for two query points
We provide an upper bound for the simplicial depth of two query points. Let m1 = |L| and
m2 = |U |, i.e., m1 +m2 = n. First, consider a fixed point l ∈ L and all triangles it forms
with two points of U . For such a triangle lu1u2, we define C as the closed cone formed by
the rays

−→
lu1 and

−→
lu2, and call d := |C ∩ U | − 1 the span of the triangle. Then d is one plus

the number of points strictly between u1 and u2 in the radial ordering around l. We now
count how many of these triangles with a certain span d hit {q1, q2}.

We note that, for a fixed l, at most d triangles with span d can hit a query point, so at
most 2d of these can be hitting. On the other hand, for each d there are at most m2 − d
many triangles, hitting or not. We can do this for every lower and upper point, and sum up
to get an upper bound on the simplicial depth as follows:

σP (q1, q2) ≤
∑
l∈L

m2−1∑
d=1

min{2d,m2 − d}+
∑
u∈U

m1−1∑
d=1

min{2d,m1 − d}

This implies a simpler bound of σP (q1, q2) ≤ 1
3m1m2 (m1 +m2 + 4), which is maximized

for m1 = m2 = n/2 (see the full version), where we get the following:

I Theorem 2.1. Let P ⊆ R2 be a set of n data points and q1, q2 be two query points, all in
general position. Then

σP (q1, q2) ≤ n3/12 + n2/3.

There are indeed point sets in convex position that allow for a similar simplicial depth:
consider P as the vertex set of a regular n-gon for n = 2m (see Figure 1 for an illustration).
Place both q1 and q2 on the intersection c of the long diagonals and move them slightly
outwards such that they do not lie on any line through two points of P but such that the line
through them contains c. Then {q1, q2} has simplicial depth σP (q1, q2) = m3

3 +m2− 4m
3 . With

n = 2m, this translates to n3

24 + n2

4 −
2n
3 , which is roughly half of the bound in Theorem 2.1.

Further, recall that the maximal simplicial depth of a single point is n3

24 −
n
6 . Comparing

to this, we only improve by addition of a quadratic term. Nevertheless, for up to 14 data
points in convex position, computational experiments have shown that this construction is
optimal. We conjecture that this holds for all sets in convex position. Note that while for
one query point it is not hard to see that the simplicial depth is maximized for data point
sets in convex position, the same cannot be said for two query points. In fact, the same
question can be asked for any number of query points: is the simplicial depth of k query
points always maximized by data point sets in convex position?

3 More query points

3.1 Upper bound for data points in convex position
In this section we give an upper bound to the simplicial depth of any set of k query points
Q = {q1, . . . , qk} in a given point set P = {p1, . . . , pn} ⊂ R2 when P is in convex position.
We assume that P ∪Q is in general position and Q is in conv(P ), the convex hull of P .

EuroCG’19
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q1
q2

Figure 1 A point set of size 2m = 12 with conjectured maximal simplicial depth 100 for two
query points.

Figure 2 The different types of non-hitting triangles.

We again count the triangles not containing any points of Q. Let S be the set of
triangles spanned by points of P . We partition S into those triangles that do hit Q,
Σ := {S ∈ S : S ∩Q 6= ∅}, and those which do not hit Q, ∆ := {S ∈ S : S ∩Q = ∅}. Then
σP (Q) := |Σ| =

(
n
3
)
− |∆|. We devise a lower bound on |∆|. Let S ∈ ∆ be an arbitrary

non-hitting triangle. Note that S \ conv(Q) has at most three connected components, each
of which contains at least one original vertex of S. We partition ∆ into the triangles that
get split into i parts by conv(Q), ∆i for i ∈ {1, 2, 3}. We see that (see Figure 2):

(1) If S \ conv(Q) has only one component, then S and conv(Q) are disjoint (as S does not
hit Q). S has a unique pair of vertices w,w′ whose supporting line separates S and Q.

(2) If S \ conv(Q) has two components, we see that there are two vertices of S in one and a
single vertex p in the other component. This vertex p is again unique.

(3) If S \ conv(Q) has three components, we discard it and potentially worsen our bound.

Let ti(p) be the number of data points on the right side of the ray −→pqi, where the elements
of Q are indexed according to their radial order around p. We get that:
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σP (q1, . . . , qk) ≤
(
n

3

)
−
∑
p∈P

1
2

(
t1(p)

2

)
+

k−1∑
i=1

(
ti+1(p)− ti(p)

2

)
+ 1

2

(
n− 1− tk(p)

2

)
︸ ︷︷ ︸

=:fp(t1,...,tk)

 .

We count each simplex that does not intersect conv(Q) “a half times” for w and w′. The
function fp(t1, . . . , fk) is convex on {t ∈ Rk | 0 ≤ t1 ≤ · · · ≤ tk ≤ n− 1}, so we can bound it
from below separately using convex optimization techniques. (Intuitively, the value of fp is
small if the number of points between two consecutive points of Q is roughly the same; we
provide a formal reasoning in the full version.) With this, we obtain an upper bound of

σP (q1, . . . , qk) ≤ n3k

6(k + 3) −
3n2

2(k + 3) −
5n
24 .

For k = 2, we can compare this to Theorem 2.1 – we go from the older 1
12n

3 + 1
6n

2 bound
to 1

15n
3 − 3

10n
2 − 5

24n and improve asymptotically by a factor of 5
4 . (But recall that the new

bound is for P in convex position only.) Comparing thisto
(

n
3
)
we get the following theorem.

I Theorem 3.1. Let P ⊆ R2 be n points in convex position, and let q1, . . . , qk ∈ R2 be k
query points. Then at most a fraction of 1− 3

k+3 +O
( 1

n

)
of the simplices with vertices in P

can contain any of the k query points.

3.2 Algorithmic aspects
I Theorem 3.2. The simplicial depth of a set Q ⊂ R2 w.r.t. a set P ⊂ R2, all in general
position, with N = |P |+ |Q| can be computed in O(N7/3polylog(N)) time.

Proof. We use an approach similar to one of computing the number of empty triangles in a
point set (see [12]). For a point p ∈ P , we define a simple polygon Rp that contains every
triangle spanned by p and two other points of P not hitting Q. Let B be a bounding box
of P . Shoot a ray from every point q ∈ Q in the opposite direction of p until hitting B and
add two edges for Rp in B starting at q with a small angle separated by the ray. See Figure 3.
Now two points of P \ {p} see each other in Rp iff they form a triangle with p not hitting Q.

Ben-Moshe et al. [6] construct the visibility graph of points inside a simple polygon.
While enumerating the edges of this graph is too costly here, their method can be adapted
to count them. They argue that edges of the visibility graph that cross an edge e separating
the polygon (that is not necessarily a diagonal of the polygon) correspond to bichromatic
crossings in an arrangement of red and blue segments: A point and the part on e which the
point sees defines a (possibly empty) wedge, whose dual is a line segment; two points define
an edge of the visibility graph crossing e iff their dual segments intersect; the red segments
correspond to points in one sub-polygon defined by e, and the blue segments to points in
the other sub-polygon. These segments can be given in O(N log(N)) time using standard
machinery for polygon visibility and point-line duality. Agarwal [2, Theorem 6.1] shows how
to count bichromatic crossings of n red and blue segments in O(n4/3polylog(n)) time.

As in [6, Section 2.1], we divide Rp into two parts, each containing at least a constant
fraction of the union of points and Rp’s vertices (e.g., 1/3 is doable by adapting an approach
from [8] not even using that Rp is star-shaped). Then, we recursively count the edges of the
visibility graph in the two sub-polygons and add the number of edges crossing the diagonal
using Agarwal’s algorithm [2, Sect. 6]. As this is the dominating task in each iteration, we can
use induction on the number of points to show that this algorithm requires O(N4/3polylog(N))
time for computing the number of triangles with a point p not hitting Q. J

EuroCG’19
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p

Figure 3 The polygon Rp of a point p ∈ P . Any two points of P \ {p} (blue dots) that see each
other correspond to a triangle with p not containing a point of Q (red crosses).

We do not know about the complexity of finding a set Q, |Q| = k, with maximal simplicial
depth for a given integer k and data set P . Using a straight-forward reduction from monotone
planar 3-SAT [11], we show in the full version that extending a given set to have a point in
each triangle of P is NP-hard.
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