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Abstract
The interactive exploration of data requires data structures that can be repeatedly queried to
obtain simple visualizations of parts of the data. In this paper we consider the scenario that the
data is a set of points each associated with a time stamp and that the result of each query is
visualized by an α-shape, which generalizes the concept of convex hulls. Instead of computing
each shape independently, we suggest and analyze a simple data structure that aggregates the
α-shapes of all possible queries. Once the data structure is built, it particularly allows us to
query single α-shapes without retrieving the actual (possibly large) point set and thus to rapidly
produce small previews of the queried data.

1 Introduction

In scientific projects that deal with large amounts of spatio- and temporal data, the data
management is essential. As an example take a project dealing with a database of storm
events of the United States; see Figure 1. Each storm event is a data point with a geo-location
and a time stamp. Assuming a collection of storm events over several decades the amount of
data becomes enormous. On the other hand, for certain scientific questions the user may not
be interested in all data, but only in a subset in a pre-defined temporal range. Hence, before
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Figure 1 Scenario for the case that the user queries simplified visualizations for all storm events
in the year 1991 broken down to months. The α-shapes (lilac) were generated with
our approach. Data retrieved from Data.gov. Map tiles by Stamen Design, under CC
BY 3.0. Data by OpenStreetMap, under ODbL.
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Figure 2 The α-shape (lilac arcs) for a point set (filled blue disks) of a temporal range query.

downloading the actual data for a thorough analysis, the user may be interested in exploring
the data by querying simplified visualizations of the data within temporal ranges.

One approach to create a simplified visualization is to sketch the outline of the queried
data set providing the user with the possibility of roughly assessing the spatial distribution of
the data. For example, the convex hull is a simple polygonal representation for that purpose.
However, for most data sets this representation is not adequate, because the convex hull
may easily cover large areas that do not contain any points of the data set. A wide range of
more sophisticated polygonal representations exists; some of these are based on Delaunay-
triangulations and shortest-path graphs [5, 6, 9] while others use spatial grids to define the
representation [1, 3, 10, 13]. In this paper we use α-shapes [8, 9] for representing point sets,
which are a generalization of convex hulls and strongly related to Delaunay-triangulations.
Among others, this technique finds its application in digital shape sampling and processing
[2], in pattern recognition [14, 15] and micro-biology [7, 11].

An α-shape of a set P ⊂ R2 of n points in the plane is defined as follows. Let α > 0. The
edge domain of a directed edge pq ∈ P ×P with |q− p| ≤ α is the open disk Dpq with radius
α
2 whose center lies to the right of pq and whose boundary contains the points p and q. The
set Sα(P ) ⊆ P ×P of all edges that are shorter than α and do not contain any point of P in
their edge domain is called α-shape; see Figure 2. It can be computed in O(n logn) time [9].

In our use-case each point p ∈ P additionally is associated with a time stamp tp ∈ R;
we assume that all points in P have pairwise distinct spatial and temporal coordinates. As
described in the running example the point set P is queried frequently. Such a query Q is a
temporal range [tstart

Q , tend
Q ] and its result is the subset PQ =

{
p ∈ P | tp ∈

[
tstart
Q , tend

Q

]}
. We

are then interested in visualizing PQ by its α-shape. A straight-forward approach for a query
Q first queries the set P obtaining PQ and then computes the α-shape Sα(PQ). Utilizing a
balanced binary search-tree, finding PQ takes O(logn+ |PQ|) time. Additionally computing
the α-shape we obtain O(logn + |PQ| log |PQ|) running time in total. For our use-case of
frequently providing α-shapes for visualizing the query results, we aim at a better running
time per query. In particular, for creating previews of the data, we only want to retrieve
the α-shape of PQ but not the entire set PQ. In a pre-processing phase we compute a data
structure that aggregates the α-shapes of all possible queries; we call it the α-structure of P .
We use this data structure in the query phase to obtain the α-shapes of the incoming queries.
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Figure 3 The edge domain with its contained point set R and the time attributes of an edge pq.

As we show in Section 3 the α-structure leads to quadratic memory consumption in the
worst case. However, a detailed analysis for points sets whose spatial distribution is uniform
and uncorrelated to their temporal distribution shows that the size of the α-structure is
more complaisant. In Section 4 we present an algorithm that computes an α-structure in
O(n(logn+mR logmR)) time utilizing linear and rotational sweeps, where mR denotes the
maximum number of points p ∈ P in a square of width 2α. For the query phase we use a
data structure for filtering search to answer a query in O(logn+ k) time, where k is the size
of the returned α-shape [4]. In Section 5 we present our initial experiments on real-world
data showing that the α-structure is applicable in our concrete use case.

2 On α-Structures

In the following we define the α-structure of P . We say that an edge pq ∈ P × P is active
for a temporal query Q if the α-shape Sα(PQ) contains pq. We observe that an edge pq can
be active for an infinite set of temporal queries, but it can only be active for O(n2) different
subsets of P . To characterize this set, we introduce the following notation; see Figure 3.

Let e = pq ∈ P × P with tp < tq, and let R ⊆ P be the set of points contained in the
edge domain of pq. Further, let tr with r ∈ R be the largest time stamp that is smaller
than tp; if r does not exist, we set tr = −∞. The minimal query start time is t1e := tr and
the maximal query start time is t2e := tp. Similarly, let ts with s ∈ R be the smallest time
stamp that is greater than tq; if s does not exist, we set ts = ∞. The minimal query end
time is t3e := tq and the maximal query end time is t4e := ts. We call t1e, t2e, t3e, t4e the time
attributes of pq. The next lemma characterizes for which queries a particular edge is active.

I Lemma 2.1. The edge e = pq is active for a query Q if and only if:

1. The distance between p and q is smaller than α, and
2. ∀r ∈ R : tr /∈ [tp, tq], and
3. tstart

Q ∈
[
t1e, t

2
e

]
and tend

Q ∈
[
t3e, t

4
e

]
.

Proof. Assume that e is active for Q. This is equivalent to the following three conditions; (i)
p and q are contained in PQ, which is equivalent to tp, tq ∈

[
tstart
Q , tend

Q

]
, (ii) e is shorter than
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α (equivalent to Condition (1) of Lemma 2.1) and (iii) no point r ∈ PQ is contained in R,
which is equivalent to ∀r ∈ R : tr /∈

[
tstart
Q , tend

Q

]
. Applying the definition of t1e, t2e, t3e, and t4e

the Conditions (i) and (iii) are equivalent to Condition (2) and (3) of Lemma 2.1. J

The α-structure Sα(P ) ⊆ P × P of P is the set of all active edges over all possible temporal
queries. We show that Condition (1) and (2) of Lemma 2.1 are necessary and sufficient for
an edge pq to be contained in Sα.

I Lemma 2.2. The edge e = pq ∈ P × P is contained in Sα(P ) if and only if:

1. The distance between p and q is smaller than α.
2. ∀r ∈ R : tr /∈ [tp, tq]

Proof. Let e ∈ Sα(P ), and let Q be a temporal range query for which e ∈ α(PQ). Then e
fulfills the conditions of Lemma 2.1 and therefore the conditions of Lemma 2.2. Conversely,
let e be shorter than α and all points r ∈ R be temporally not in [tp, tq]. Then the α-shape
of the query Q with tstart

Q = tp and tend
Q = tq contains the edge e. J

3 Memory Consumption

For our use-case of a database the memory consumption of our approach is decisive for
being deployed in practice. We first observe that O(n2) is an upper bound for the size of an
α-structure. The following theorem shows that this is also a lower bound in the worst case.

I Theorem 3.1. For a set P of n points the α-structure has size Ω(n2) in the worst case.

Proof. Let P = {p1, p2, . . . , pn} be a point set with time stamps t1 < t2 < . . . < tn such that
the points lie on a circle C of radius r < 1

2α ordered clockwise according to their time stamps;
see Figure 4. Let pi, pj ∈ P be two points with ti < tj . We show that pipj is contained in
the α-structure Sα(P ) by proving the two conditions of Lemma 2.2. Due to r < 1

2α the
points pi, pj have distance smaller than α. Hence, Condition (1) of Lemma 2.2 is satisfied.

For the second condition let Rij be the set of points contained in edge domain Dij of
pipj . We observe that Dij and C intersect in pi and pj . Since the radius of C is smaller than

edge domain of −−→p1p3
⇒ R13 = {p4, p5}

p1

p2

p3p4

p5

−−→p1p3

r < 1
2
α

Figure 4 Worst-case example for the size of the α-structure as described in Theorem 3.1.



A. Bonerath, J.-H. Haunert, B. Niedermann 28:5

the radius of Dij , the boundary of Dij partitions C into two parts. One part is contained
in Dij and the other lies outside of Dij . Since the points p1, p2, . . . , pn appear in clockwise
order on C, and since the center of Dij lies to the right of pipj by definition, we obtain
Rij = {p1, . . . , pi−1, pj+1, . . . , pn−1}. Consequently, Condition (2) is satisfied. J

Hence, the database may exceed a size that is applicable in practice. However, the example
is rather unlikely to occur in practice. The next theorem indicates that the data structure is
more complaisant than the worst case example suggests. Following our use case we assume
that the points are contained in a rectangle B of width and height at least 2α.

I Theorem 3.2. For a finite set P ⊆ B of n points for which the spatial distribution is
uniform in B and the spatial distance is uncorrelated to the temporal distance the α-structure
has expected size O(n).

To prove Theorem 3.2 we show that the expected size of Sα is in O(nm/κ), where m is
the expected number of points in the CPN of a point over all points and κ is the expected
number of points in an edge domain over all possible edge domains. Since the area covered
by a CPN and an edge domain has a fixed ratio together with a uniform density distribution
we can show that m/κ is in O(1). In our experiments on real-world data we also observe a
linear relation between the number of points and the size of the α-structure; see Section 5.

4 Constructing and Querying α-Structures

We introduce an algorithm that computes an α-structure of a point set P in O(n(logn +
mR logmR)) time and describe how to query this data structure. The construction algorithm
applies two steps for each point p ∈ P ; see Algorithm 1. The first step, which we call
CPN-Search, computes all points Tp ⊆ P that fulfill Condition (1) of Lemma 2.2, i.e., all
points that lie in a circle with center at p and radius α. We call this circle the circle of
potential neighbors (CPN) of p. We use the sweep line approach by Peng and Wolff [12] to
find Tp in O(logn+mR) time. The second step, which we call CPN-Check, checks for each
point q ∈ Tp whether the edge pq fulfills Condition (2) of Lemma 2.2. If this is the case it
computes the time attributes of pq. To implement this efficiently, we use a rotational sweep.
More precisely, we use a circle C of radius α

2 which sweeps around p such that the center of C
moves along the circle with center p and radius α

2 ; see Figure 5. We call C the sweep circle of
p. Let R be the points contained in C; we represent R using a binary search tree ordered by
the time stamps of the points. The sweep circle C stops its rotation whenever its boundary
intersects with a point q ∈ Tp. Two kind of events are possible; either the point q enters
C, or it leaves C. Whenever a point q enters C, the sweep circle equals the edge domain
of pq. Utilizing the properties of the binary search tree R Condition (2) of Lemma 2.2 can
be checked in O(logmR) time. If this is the case the time attributes of pq can be computed

Algorithm 1: Computation of the α-structure
Input: Point set P , parameter α
Output: α-structure Sα(P )
foreach p ∈ P do

CPN-Search: Find all points Tp ⊆ P in the CPN of p
CPN-Check: Check for each edge pq with q ∈ Tp whether it fulfils Condition (2) of
Lemma 2.2, possibly compute the time attributes and add to Sα(P )

EuroCG’19



28:6 Computing α-Shapes for Temporal Range Queries on Point Sets

p

Sweep-
direction

q1

q2

q3

CPN of p
Sweep-circle

Event 1: insert q1 to R,
check edge pq1 for
Condition (2) of Lemma 2.2

Event 2: insert q2 to R,
check edge pq2 for
Condition (2) of Lemma 2.2

Event 3: remove q1 from R
Event 4: insert q3 to R,
check edge pq3 for
Condition (2) of Lemma 2.2

Event 5: remove q3 from R

Event 6: remove q2 from R

Figure 5 The rotational sweep CPN-Check method for point p and CPN points Tp = {q1, q2, q3}.

using the temporal order of R in O(logmR) time. This rotational sweep can be done in
O(mR logmR) time. Overall Algorithm 1 has running time O(n(logn+mR logmR)).

I Theorem 4.1. For a set P of n points the α-structure can be computed in O(n(logn +
mR logmR)) time, where mR is the maximum number of points in a square with width 2α.

For the query phase we represent each edge e with time attributes t1e, t2e, t3e and t4e of the
α-structure by a rectangle [t1e, t2e] × [t3e, t4e]. A query [tstart

Q , tend
Q ] corresponds to finding all

rectangles containing the point (tstart
Q , tend

Q ). Using a data structure for filtering search, we
can solve this problem in O(logn+ k) time per query, where k is the size of the α-shape [4].

5 Experimental Evaluation

We analyze the performance of α-structures using a data set of storm events in the United
States in the years 1991–2000 obtained from Data.gov; see Figure 6 for the year 1991. The
experiments1 indicate that the memory consumption is linear in n; see Figure 7. The
construction time for a point set of size n = 70 000 varies between several seconds and hours
depending on the value of α; see Figure 7. We assume this to be acceptable, since it is a pre-
processing step. Applying the α-structure for temporal range queries the experiments indicate
the query time to be nearly constant 200 [ms]; see Figure 8. In contrast an implemented
straight forward approach yields results that indicate a dependency to the subset size.

6 Conclusion and Outlook

Overall we presented the design and construction of a data structure that provides the
edges of α-shapes for temporal range queries on point sets. For future work we plan to
consider other aggregated representations of geographic objects. Further, to reduce memory

1 Implementation in Java, performed on a 4-core Intel Core i7-7700T CPU with 16 GiB RAM.

https://www.data.gov/
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January 1991 February 1991 March 1991
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Figure 6 Storm events for the months of 1991 represented by α-shapes (lilac). The actual
point set (blue) is drawn for illustration. Data retrieved from Data.gov. Map tiles by
Stamen Design, under CC BY 3.0. Data by OpenStreetMap, under ODbL.

consumption we plan to work on an extension that only considers temporally long-lasting
α-shape edges.
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