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Abstract
We present a fully dynamic data structure for the maintenance of lower envelopes of pseudo-
lines. The structure has O(log2 n) update time and O(logn) vertical ray shooting query time.
To achieve this performance, we devise a new algorithm for finding the intersection between
two lower envelopes of pseudo-lines in O(logn) time, using tentative binary search; the lower
envelopes are special in that at x = −∞ any pseudo-line contributing to the first envelope lies
below every pseudo-line contributing to the second envelope. The structure requires O(n) storage
space.

1 Introduction

A set of pseudo-lines in the plane is a set of infinite x-monotone curves each pair of which
intersects at exactly one point. Arrangements of pseudo-lines have been intensively studied
in discrete and computational geometry; see the recent survey on arrangements [7] for a
review of combinatorial bounds and algorithms for arrangements of pseudo-lines. In this
paper we consider the following problem: Given n pseudo-lines in the plane, dynamically
maintain their lower envelope such that one can efficiently answer vertical ray shooting
queries from y = −∞. The dynamization is under insertions and deletions. If we were
given n lines (rather than pseudo-lines) then we could have used any of several efficient
data structures for the purpose [3–5, 9, 10]; these are, however, not directly suitable for
pseudo-lines. There are several structures that rely on shallow cuttings and can handle
pseudo-lines [2,6,8]. The solution that we propose here is, however, considerably more efficient
than what these structures offer. We devise a fully dynamic data structure with O(log2 n)
update-time, O(logn) vertical ray-shooting query-time, and O(n) space for the maintenance
of n pseudo-lines. The structure is a rather involved adaptation of the Overmars-van Leeuwen
structure [10] to our setting, which matches the performance of the original algorithm for the
case of lines. The key innovation is a new algorithm for finding the intersection between two
lower envelopes of planar pseudo-lines in O(logn) time, using tentative binary search (where
each pseudo-line in one envelope is “smaller” than every pseudo-line in the other envelope in
a sense to be made precise below). To the best of our knowledge this is the most efficient
data structure for the case of pseudo-lines to date.
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2 Preliminaries

Let E be a finite family of pseudo-lines in the plane, and let ` be a vertical line strictly to
the left of the left-most intersection point between lines in E (namely to the left of all the
vertices of the arrangement A(E)). The line ` defines a total order ≤ on the pseudo-lines in
E, namely for e1, e2 ∈ E, we have e1 ≤ e2 if and only if e1 intersects ` below e2. Since each
pair of pseudo-lines in E crosses exactly once, it follows that if we consider a vertical line `′
strictly to the right of the right-most vertex of A(E), the order of the intersection points
between `′ and E, from bottom to top, is exactly reversed.

The lower envelope L(E) of E is the x-monotone curve obtained by taking the pointwise
minimum of the pseudo-lines in E. Combinatorially, the lower envelope L(E) is a sequence of
connected segments of the pseudo-lines in E, where the first and last segment are unbounded.
Two properties are crucial for our data structure: (A) every pseudo-line contributes at most
one segment to L(E); and (B) the order of these segments corresponds exactly to the order
≤ on E defined above. In fact, our data structure works for every set of planar curves with
properties (A) and (B) (with an appropriate order ≤), even if they are not pseudo-lines in
the strict sense.

We assume a computational model in which primitive operations on pseudo-lines, such as
computing the intersection point of two pseudo-lines or determining the intersection point of
a pseudo-line with a vertical line can be performed in constant time.

3 Data structure and operations

The tree structure. Our primary data structure is a balanced binary search tree Ξ. Such a
tree data structure supports insert and delete, each in O(logn) time. The leaves of Ξ contain
the pseudo-lines, from left to right in the sorted order defined above. An internal node v ∈ Ξ
represents the lower envelope of the pseudo-lines in its subtree. More precisely, every leaf v
of Ξ stores a single pseudo-line ev ∈ E. For an inner node v of Ξ, we write E(v) for the set
of pseudo-lines in the subtree rooted at v. We denote the lower envelope of E(v) by L

(
v
)
.

The inner node v has the following variables:
f , `, r: a pointer to the parent, left child and right child of v, respectively;
max: the maximum pseudo-line in E(v);
Λ: a balanced binary search tree that stores the prefix or suffix of L(v) that is not on
the lower envelope L(f) of the parent (in the root, we store the lower envelope of E).
The leaves of Λ store the pseudo-lines that support the segments on the lower envelope,
with the endpoints of the segments, sorted from left to right. An inner node of Λ stores
the common point of the last segment in the left subtree and the first segment in the
right subtree. We will need split and join operations on the binary trees, which can be
implemented in O(logn) time.

Queries. We now describe the query operations available on our data structure. In a vertical
ray-shooting query, we are given a value x0 ∈ R, and we would like to find the pseudo-line
e ∈ E where the vertical line ` : x = x0 intersects L(E). Since the root of Ξ explicitly stores
L(E) in a balanced binary search tree, this query can be answered easily in O(logn) time.

I Lemma 3.1. Let ` : x = x0 be a vertical ray shooting query. We can find the pseudo-line(s)
where ` intersects L(E) in O(logn) time.

Proof. Let r be the root of Ξ. We perform an explicit search for x0 in r.Λ and return the
result. Since r.Λ is a balanced binary search tree, this takes O(logn) time. J
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Update. To insert or delete a pseudo-line e in Ξ, we follow the method of Overmars and
van Leeuwen [10]. We delete or insert a leaf for e in Ξ using standard binary search tree
techniques (the v.max pointers guide the search in Ξ). As we go down, we construct the
lower envelopes for the nodes hanging off the search path, using split and join operations on
the v.Λ trees. Going back up, we recompute the information v.Λ and v.max. To update the
v.Λ trees, we need the following operation: given two lower envelopes L` and Lr, such that
all pseudo-lines in L` are smaller than all pseudo-lines in Lr, compute the intersection point
q of L` and Lr. In the next section, we will see how to do this in O(logn) time, where n
is the size of E. Since there are O(logn) nodes in Ξ affected by an update, this procedure
takes O(log2 n) time. More details can be found in the literature [10,11].

I Lemma 3.2. It takes O(log2 n) to insert or remove a pseudo-line in Ξ.

4 Finding the intersection point of two lower envelopes

Given two lower envelopes L` and Lr such that all pseudo-lines in L` are smaller than all
pseudo-lines in Lr, we would like to find the intersection point q between L` and Lr. We
assume that L` and Lr are represented as balanced binary search trees. The leaves of L`

and Lr store the pseudo-line segments on the lower envelopes, sorted from left to right. We
assume that the pseudo-line segments in the leaves are half-open, containing their right, but
not their left endpoint in L`; and their left, but not their right endpoint in Lr.1 Thus, it is
uniquely determined which leaves of L` and Lr contain the intersection point q. A leaf v
stores the pseudo-line L(v) that supports the segment for v, as well as an endpoint v.p of
the segment, namely the left endpoint if v is a leaf of L`, and the right endpoint if v is a leaf
of Lr.2 An inner node v stores the intersection point v.p between the largest pseudo-line in
the left subtree v.` of v and the smallest pseudo-line in the right subtree v.r of v, together
with the lower envelope L(v) of these two pseudo-lines. These trees can be obtained by
appropriate split and join operations from the Λ trees stored in Ξ.

Let u∗ ∈ L` and v∗ ∈ Lr be the leaves whose segments contain q. Let π` be the path
in L` from the root to u∗ and πr the path in Lr from the root to v∗. Our strategy is as
follows: we simultaneously descend in L` and in Lr. Let u be the current node in L` and v
the current node in Lr. In each step, we perform a local test on u and v to decide how to
proceed. There are three possible outcomes:
1. u.p is on or above L(v): the intersection point q is equal to or to the left of u.p. If u is

an inner node, then u∗ cannot lie in u.r; if u is a leaf, then u∗ lies strictly to the left of u;
2. v.p lies on or above L(u): the intersection point q is equal to or to the right of v.p. If v is

an inner node, then v∗ cannot lie in v.`; if v is a leaf, then v∗ lies strictly to the right of v;
3. u.p lies below L(v) and v.p lies below L(u): then, u.p lies strictly to the left of v.p (since

we are dealing with pseudo-lines). It must be the case that u.p is strictly to the left of q
or v.p is strictly to the right of q (or both). In the former case, if u is an inner node, u∗
lies in or to the right of u.r and if u is a leaf, then u∗ is u or a leaf to the right of u. In
the latter case, if v is an inner node, v∗ lies in or to the left of v.` and if v is a leaf, then
v∗ is v or a leaf to the left of v; see Figure 1.

1 We actually store both endpoints in the trees, but the intersection algorithm uses only one of them,
depending on the role the tree plays in the algorithm.

2 If the segment is unbounded, the endpoint might not exist. In this case, we use a symbolic endpoint at
infinity that lies below every other pseudo-line.
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Figure 1 An example of Case 3. L` is blue; Lr is red. The solid pseudo-lines are fixed. The
dashed pseudo-lines are optional, namely, either none of the dashed pseudo-lines exists or exactly
one of them exists. u.p and v.p are the current points; and Case 3 applies. Irrespective of the local
situation at u and v, the intersection point can be to the left of u.p, between u.p and v.p or to the
right of v.p, depending on which one of the dashed pseudo-lines exists.

Overmars and van Leeuwen [10,11] describe a method for the case that L` and Lr contain
lines. Unfortunately, it is not clear how their strategy applies in the more general setting of
pseudo-lines. The reason for this lies in Case 3: in this case, it is not immediately obvious
how to proceed, because the correct step might be either to go to u.r or to v.`. In the case
of lines, Overmars and van Leeuwen can solve this ambiguity by comparing the slopes of the
relevant lines. For pseudo-lines, however, this does not seem to be possible. For an example,
refer to Figure 1, where the local situation at u and v does not determine the position of the
intersection point q. Therefore, we present an alternative strategy.

u

v

L` Lr

Figure 2 The invariant: the current search nodes are u and v. uStack contains all nodes on the
path from the root to u where the path goes to a right child (orange squares), vStack contains all
nodes from the root to v where the path goes to a left child (orange squares). The final leaves u∗

and v∗ are in one of the gray subtrees; and at least one of them is under u or under v.

We will maintain the invariant that the subtree at u contains u∗ or the subtree at v
contains v∗ (or both). When comparing u and v, one of the three cases occurs. In Case 3,
u∗ must be in u.r, or v∗ must be in v.`; see Figure 3.

We move u to u.r and v to v.`. One of these moves must be correct, but the other move
might be mistaken: we might have gone to u.r even though u∗ is in u.` or to v.` even though
v∗ is in v.r. To correct this, we remember the current u in a stack uStack and the current v
in a stack vStack, so that we can revisit u.` or v.r if it becomes necessary. This leads to the
general situation shown in Figure 2: u∗ is below u or in a left subtree of a node on uStack,
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u

v
Case 3

u

v

L` Lr L` Lr

Figure 3 Comparing u to v: in Case 3, we know that u∗ is in u.r or v∗ is in v.`; we go to u.r

and to v.`.

u

v

u

vu′

Case 1

Case 1 Case 2 Case 3

L` Lr

L` Lr

u
vu′

L` Lr

u

u′
v

L` Lr

u

u′
v

L` Lr

Figure 4 Comparing u to v: in Case 1, we know that u∗ cannot be in u.r. We compare u′ and v

to decide how to proceed: in Case 1, we know that u∗ cannot be in u′.r; we go to u′.`; in Case 2, we
know that u∗ cannot be in u.r and that v∗ cannot be in v.`; we go to u.` and to v.r; in Case 3, we
know that u∗ is in u′.r (and hence in u.`) or in v.`; we go to u.` and to v.`. Case 2 is not shown as
it is symmetric.

and v∗ is below v or in a right subtree of a node on vStack, and at least one of u∗ or v∗
must be below u or v, respectively. Now, if Case 1 occurs when comparing u to v, we can
exclude the possibility that u∗ is in u.r. Thus, u∗ might be in u.`, or in the left subtree of
a node in uStack; see Figure 4. To make progress, we now compare u′, the top of uStack,
with v. Again, one of the three cases occurs. In Case 1, we can deduce that going to u′.r
was mistaken, and we move u to u′.`, while v does not move. In the other cases, we cannot
rule out that u∗ is to the right of u′, and we move u to u.`, keeping the invariant that u∗
is either below u or in the left subtree of a node on uStack. However, to ensure that the
search progresses, we now must also move v. In Case 2, we can rule out v.`, and we move
v to v.r. In Case 3, we move v to v.`. In this way, we keep the invariant and always make
progress: in each step, we either discover a new node on the correct search paths, or we pop
one erroneous move from one of the two stacks. Since the total length of the correct search
paths is O(logn), and since we push an element onto the stack only when discovering a new
correct node, the total search time is O(logn); see Figure 5 for an example run. For the full
pseudocode and the formal proof see [1].
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(a) Demonstration of two set of pseudo-lines and their lower envelope: (i) the blue and
green pseudo-lines, (ii) the red and orange pseudo-lines. The blue and the red dots
represents the intersection points on the lower envelopes.

1

2

3

4

5

6

7 1

2

3

4

5

6

7

2 3 4 5 6

7

1
2

3
4

5 6 7

1 2 3 4 5 6

7
1

2
3

4

5 6 7

Procedure case:

Case 3

Case 2? ?Case 2

Case 3

Case 1  Case 3

Case 3 ??End

uStack | vStack

? ? ? ? ? ? ?|

4 ? ? ? ? ? | 4

4 ? ? ? ? ? |?

4, 6 ? ? ? | 6

4, 6 ? ? ? | 6, 5

u ? | v

4 ? | 4

6 ? | 2

6 ? | 6

7 ? | 5

7* | 5*

Step

1.

2.

3.

4.

5.

1 ? ? ? ? ? ? 2 ? ? ? ? ? ? ?3 ? ? ? ? ? ? 4 ? ? ? ? ? ? ?5 ? ? ? ? ? ? 6 ? ? ? ? ? ? ? ? ?7 ? ? ? ? ? ? 8?

(b) The top figure shows the lower envelope of (a). The bottom figure shows the the trees
which maintain the lower envelopes. u(i) and v(i) shows the position of the pointers u

and v at step i, during the search procedure.

Figure 5 Example of finding the intersection point of two lower envelopes:
Step u v uStack vStack Procedure case
1 4 4 ∅ ∅ Case 3
2 6 2 4 4 Case 2 → Case 2
3 6 6 4 ∅ Case 3
4 7 5 4, 6 6 Case 1 → Case 3
5 7* 5* 4, 6 6, 5 Case 3 → End
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