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Abstract
We study a variation of the classical set cover problem called the balanced covering (BC) problem
on a set of red and blue points in the Euclidean plane. Let P be a set of red and blue points in
the plane. An object is called a balanced object with respect to P , if it contains an equal number
of red and blue points from P . In the BC problem, the objective is to cover the points in P

with a minimum number of homogeneous geometric objects (i.e., unit squares, intervals) such
that each object is balanced. For points in the plane, we prove that the BC problem is NP-hard
when the covering objects are unit squares. For points on a line, we show that if the ratio of the
total numbers of reds and blues is more than 2 then, there exists no solution of the BC problem.
Subsequently, we devise a linear time exact algorithm for the BC problem with intervals. Finally,
we study the study the problem of computing a balanced object of maximum cardinality. For
this, we give polynomial time algorithms with unit squares in the plane and intervals on a line.

1 Introduction

Set cover is a well-studied problem in computer science with numerous application in various
fields. In this problem a set P of points and a set O of objects are given and the objective is
to cover all the points in P with a minimum number of objects in O. We consider a variation
of this problem on a bicolored (red and blue) point sets. Let P = R∪B be a set of bicolored
points in the plane, where R denotes a set of red and B denotes a set of blue points. We say
that a geometric object X is balanced if it covers an equal number of red and blue points.
Here we consider two problems based on the coverage of the points in P .

Balanced Covering (BC) Problem
Given a set P = R ∪ B of bicolored points in the plane, the objective is to find a
minimum collection set of balanced objects that covers P .

Maximum Balanced Object (MBO) Problem
Given a set P = R ∪ B of bicolored points in the plane, the objective is to find a
balanced object that covers the maximum number of points in P .

A related problem to the BC problem is the class cover problem: given a set of red and a
set of blue points and a set of objects, the goal is to cover all the blue points excluding the
red points with minimum number of objects [2, 1]. Another related problem is the red-blue
set cover problem [3]. Generalized versions of these problems are studied in [7]. Chan and
Hu [4] considered this problem when the covering objects are unit squares, and proved the
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NP-hardness and gave a PTAS. We would like to mention that, in the discrete setting, the
BC problem is equivalent to the standard geometric set cover problem and therefore becomes
NP-hard [6]. However, in the continuous setting, one would require to decide the particular
placement of the objects due to the color constraint.
Our Results: In Section 2, for points in the plane, we prove that the BC problem is
NP-hard when the covering objects are unit squares. In Section 3, for points on a line, we
show that if the ratio of the total numbers of reds and blues is more than 2 then, there
does not exist a solution of the BC problem. Subsequently, we devise a linear time exact
algorithm for the BC problem with intervals. Finally, we study the problem of computing a
single balanced object of maximum cardinality. For this, we give polynomial time algorithms
with unit squares (in section 3) in the plane and intervals on a line.

2 NP-Hardness: BC problem with Unit Squares

We prove that the BC problem with unit squares is NP-hard by a reduction from the
rectilinear planar monotone 3SAT (shortly RPM3SAT) problem that is known to be NP-
complete [5]. We define this problem as follows. A clause is said to be a positive (resp.
negative) clause if all the literals it contains are positive (resp. negative). We are given a
3SAT instance φ with n variables and m clauses either positive or negative. The variables
are positioned on a horizontal line. The positive clauses are above this line, and they connect
to its corresponding variables with three legs: (i) , (ii) , and (iii) . The negative clauses
are below the line, and they connect to its corresponding variables with three legs: (iv) ,
(v) , and (vi) . Finally, these legs do not intersect each other. The objective is to find a
satisfying assignment for φ. See Figure 1 for an instance of the RPM3SAT problem.

C1 = (X1 ∨X4 ∨X5)

X1 X2 X3 X4 X5

C3 = (X2 ∨X3 ∨X4)

C2 = (X3 ∨X4 ∨X5)

C1 = (X1 ∨X2 ∨X5)

Figure 1 An instance of the RPM3SAT problem.

We construct an instance Iφ of the BC problem from an instance φ of the RPM3SAT prob-
lem. Let {u, v} be a pair of two differently colored points that are ε (0 < ε� 1) distance
apart. We call such a pair a site. We assume that the given points are a collection of sites.
Variable Gadget: The gadget for the variable xi has two parts: a cycle and a set of chains
that are attached to the cycle. Let d be the maximum number of clauses in which xi is
present, i.e, the number of legs attached to xi. Then, xi contains d chains one for each
leg. Consider two imaginary axis-parallel horizontal lines `1 and `2 that are suitably placed
such that any two sites placed on `1 and `2 cannot be covered by a unit square (see Figure
2). We place 6m + 2 sites s1, s2, . . . , s6m+2 on `1 such that the distance between any two
consecutive sites is exactly 1. In a similar fashion, we place 6m + 2 sites t1, t2, . . . , t6m+2
sites on `2 as well (see Figure 2). We use 6 additional sites and place them in the following
way; 3 sites each to the left and right of the above arrangement (see Figure 2). Thus as a
total of 12m + 10 sites form a cycle like structure. Notice that, due to this construction,
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Figure 2 The cycle gadget corresponding to a variable xi.

in the continuous balanced covering any unit square can cover at most two sites that are
consecutive along the cycle. In Figure 2, we demonstrate a set of possible canonical unit
squares that cover the sites. Note that in an optimal balanced covering exactly half of the
squares are selected: either all solid or all dotted. There are three types of chains that are
attached to the cycle of a variable gadget. Each chain is a specific geometric embedding of a
set of sites. The gadgets of types (i) and (ii) chains are shown in Figure 3(a) and Figure 3(b)
respectively. The other types ((iii)-(vi)) of chains are constructed by a simple modification
of types (i) and (ii) chains.

(a) (b)

Figure 3 The chains of a variable (a)Type 1 (b)Type 2.

It needs to be mentioned that the number of sites is not fixed for every chain, even
for similar chains of different clauses. Now we explain how the chains are attached to the
variable cycle. Let C1, C2, . . . be the order of the positive clauses that connect to a variable.
We associate the four site s6k−3, s6k−2, s6k−1, and s6k in the cycle with the k-th clause in
this order. We remove the two sites s6k−2 and s6k−1 from the cycle and perturb the other
two sites s6k−3 and s6k slight vertically up. See Figure 3 for detailed explanation.
I Observation 1. Let Sxi

be a set of unit squares associated with xi. Exactly δi = |Sxi
|/2

squares (either all solid or all dotted) are required for an optimal balanced-covering of xi.
Clause: We describe a clause gadget and how it interacts with variable gadgets. Assume,
w.l.o.g., that Ci = (xi, yi, zi) is a positive clause. For Ci, we take a special site wi called the
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Figure 4 Positive clause interaction with the three variables it contains.

clause-site that connects the chains corresponding to the variables. The placement of wi with
respect to the three chains is shown in Figure 4. Notice that, no two sites from two different
chains are covered by a single square. Clearly, Iφ can be constructed in polynomial time.

I Lemma 2.1. φ is satisfiable if and only if Iφ has a balance cover with δ =
∑n
i=1 δi squares.

Thereby, we conclude the following theorem.

I Theorem 2.2. The BC problem is NP-hard.

3 Points on a Line

Let P be a set of of m red and n blue points on a line. We show that there is no solution
for the BC problem when m

n > 2. Note, however it is not guaranteed that there is always a
solution for BC problem if mn ≤ 2.

I Theorem 3.1. Given a set P of m red points and n blue points on a real line L, if mn > 2
then, there does not exist a solution for the BC problem.

Proof. For the sake of contradiction, let us assume that there is an optimal solution,
OPT = {I1, . . . , Ij} of the BC problem that covers P .

I Claim 1. Every blue point bi ∈ P is contained in at most two intervals in OPT .

Proof. For the sake of contradiction, let bi be contained in at least three intervals (say
Ii, Ij , Ik) in OPT . We select the two intervals from Ii, Ij , Ik; one whose left end point is left
most and the other whose right end point is right most. Clearly, removing Ii, Ij , Ik from
OPT and adding these two intervals in OPT still covers all the points, a contradiction. J

For each interval Ii ∈ OPT , we define a red-blue pairing in the following manner. Let
S(Ii) ⊆ P be the subset of points contained in Ii. Let {r1, . . . , rp} and {b1, . . . , bp} be the
red and blue points in sorted order (x-coordinate wise) in Ii. Now, we consider the red-blue
pairs {{r1, b1}, . . . {rp, bp}}. For an interval Ik, consider a pair {ri, bi} (for some i), we say
bi balances ri. Now any blue point bi that is contained in an interval Ik can balance exactly
one red point in Ik. Using Claim 1, we conclude that each blue point bi can balance at most
two different red points. Hence, the ratio between reds and blues is at most 2. J
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3.1 Exact Algorithms for Intervals

We give exact algorithms for BC and MBO problems while the covering objects are intervals.
We denote them as BCI and MBI problem, respectively. Let P = {p1, p2, . . . , pn} be a set of
red and blue points on a line given in sorted order. The idea is to obtains a set of candidate
intervals, and then choose intervals from this set with some modification. Observe that, in
any optimal solution, a chosen balanced interval is not contained in any other chosen interval.
Finding candidate intervals: We maintain a counter c (initially it is empty) and an
array A[n]. For each point pi ∈ P in the order, if pi is red we increase the value of c by 1,
otherwise decrease the value by 1, and set A[i] = c. Note that the values in A are integers
and in the range [−n, n]. Let l and h be the minimum and maximum values of the counter c,
respectively. Note that l and h can be negative. We construct a table T of (|l|+ |h|+ 1) rows
and 3 columns as follows. The first column stores the values in the range [l, h] in order. The
values of the second and third columns are initially empty. We update some of the entries
during the following procedure. We go through each entry of A one by one. For the ith entry
i.e., A[i], if T [A[i]][2] is empty then T [A[i]][2] = i. Else T [A[i]][3] = i. Now for each row i we
generate an interval if T [i][3] is non-empty. Therefore, we generates at most n/2 intervals
based on the indices of A between the l and h.

I Observation 2. For each candidate interval the difference in reds and blues is at most 1.

Now we make each candidate interval (say Ic) that is balanced in the following way. Let
(i, j) be the index of Ic. We consider the 9 intervals {i− 1, i, i+ 1} × {j − 1, j, j + 1} and
choose the maximum balance one. We make it for all candidate intervals. This process gives
us a set of candidate balance intervals. Now to find the maximum balance interval just return
the candidate balance interval that contains maximum number of points. For covering the
whole point set P , we run the standard greedy algorithm on the candidate balance intervals
and return the minimum cardinality subset of intervals that covers P .

I Theorem 3.2. Given a set P of red and blue points in sorted order on the line,
1. finding the largest balanced interval requires O(n) time and
2. finding minimum number of balanced intervals that cover P also requires O(n) time.

4 Exact Algorithm for Unit Squares

Let P = {p1, p2, . . . , pn} be a set of red and blue points on a line given in sorted order. We
study the MBO problem with unit square (shortly, MBS). Consider a unit square s, it is
called a 2-anchored square if there is at least two distinct points on any of its two consecutive
sides. Notice that, the output of the MBS problem is a 2-anchored square, otherwise we
can always translate it to make such one without loosing any point (see Figure 5(a)). The
naive algorithm for the MBS problem is following. First, we build a range tree T of P . Now,
for each 2-anchored square we check in T , the points that is contained in that square, and
report the maximum balanced square. This process takes O(n2 logn) time. We give a simple
O(n2) time algorithm for the MBS problem.

For each point pi ∈ P , let S(pi) be the square centered at pi. If pi is a blue point (resp.
red point) then, S(pi) is a blue square (resp. red square). Let S be the set of red and blue
squares based on the points of P . Let E be the set that contains the left and right endpoints
of the squares, and |E| = 2n. We consider the points in E in sorted order from left-to-right
based on their x-coordinates.
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(a)

`

(b)

Figure 5 (a) Translation into a 2-anchored square. (b) A vertical line intersecting a set of
bicolored squares.

I Observation 3. Consider any two points pi, pj ∈ P such that S(pi) and S(pj) intersect.
For an arbitrary point pk that is in the intersecting region of S(pi) and S(pj), the square
S(pk) contains both pi and pj .

We use the following procedure to find a maximum balanced square. Let ` be a vertical
sweep line that considers the squares from left-to-right. Whenever, ` reaches to a point in
E, we call it an event point and indeed we have 2n event points. For each i ∈ [2n], the
line ` passes through a point pi ∈ E, and let S ′ ⊆ S be a subset of squares intersecting `
(see Figure 5(b)). Beside that we maintain two counters (r, b) for each square. Whenever a
square s enters or leaves ` we update in the range tree the (r, b) values of all the nodes whose
corresponding squares intersecting s. Note that, at each event point, we basically have a set
of red and blue unit intervals on `. In linear time, we can compute the largest balanced subset
clique. We know that, their corresponding squares have a common intersecting region. It is
possible to place pk in that region such that S(pk) is a balanced square (from observation 3).
This process takes O(n2) time.

I Theorem 4.1. Let P be a set of red and blue points on a line given in sorted order, there
is an algorithm that computes maximum balanced unit square in O(n2) time.
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