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Abstract
Given a set of points S ⊆ R2, a subset X ⊆ S, |X| = k, is called k-gon if all points of X lie
on the boundary of the convex hull conv(X), and k-hole if, in addition, no point of S \ X lies
in conv(X). We use computer assistance to show that every set of 17 points in general position
admits two disjoint 5-holes, that is, holes with disjoint respective convex hulls. This answers a
question of Hosono and Urabe (2001).

In a recent article, Hosono and Urabe (2018) present new results on interior-disjoint holes
– a variant, which also has been investigated in the last two decades. Using our program, we
show that every set of 15 points contains two interior-disjoint 5-holes. Moreover, our program
can also be used to verify that every set of 17 points contains a 6-gon within significantly smaller
computation time than the original program by Szekeres and Peters (2006).

1 Introduction

A set of points in the Euclidean plane S ⊆ R2 is in general position if no three points lie
on a common line. Throughout this paper all point sets are considered to be in general
position. A subset X ⊆ S of size |X| = k is a k-gon if all points of X lie on the boundary
of the convex hull of X. A classical result from the 1930s by Erdős and Szekeres asserts
that, for fixed k ∈ N, every sufficiently large point set contains a k-gon [12, 25]. They also
constructed point sets of size 2k−2 with no k-gon. Recently, Suk [31] significantly improved
the upper bound by showing that every set of 2k+o(k) points contains a k-gon. However, the
precise minimum number g(k) of points needed to guarantee the existence of a k-gon is still
unknown for k ≥ 7 (cf. [32]).

In the 1970s, Erdős [11] asked whether every sufficiently large point set contains a k-hole,
that is, a k-gon with no other points of S lying inside its convex hull. Harborth [17] showed
that every set of 10 points contains a 5-hole and Horton [18] introduced a construction of
large point sets without 7-holes. The question, whether 6-holes exist in sufficiently large point
sets, remained open until 2007, when Nicolas [26] and Gerken [15] independently showed that
point sets with large k-gons also contain a 6-hole (see also [33]). The currently best bound is
by Koshelev [23], who showed that every set of 463 points contains a 6-hole. However, the
largest set without 6-holes currently known has 29 points and was found by Overmars [27].

In 2001, Hosono and Urabe [19] started the investigation of disjoint holes, where two
holes X1, X2 of a given point set S are said to be disjoint if their respective convex hulls are
disjoint (that is, conv(X1) ∩ conv(X2) = ∅). This led to the following question: What is the
smallest number h(k1, . . . , kl) such that every set of h(k1, . . . , kl) points determines a ki-hole
for every i = 1, . . . , l, such that the holes are pairwise disjoint [21]?
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In Sections 2 and 3, we summarize the current state of the art for two- and three-
parametetric values and we present some new results that were obtained using computer-
assistance. The basic idea behind our computer-assisted proofs is to encode point sets and
disjoint holes only using triple orientations (see Section 4), and then to use a SAT solver to
disprove the existence of sets with certain properties (see Section 5).

In the Final Remarks (Section 6) we outline how our SAT model can be adapted to tackle
related questions on point sets. In particular, the program can be used to show that every set
of 15 points contains two interior-disjoint 5-holes, and to prove g(6) = 17 with significantly
smaller computation time than the original program from Szekeres and Peters [32].

2 Two Disjoint Holes

For two parameters, the value h(k1, k2) has been determined for all k1, k2 ≤ 5 except for
h(5, 5) [19, 20, 21, 5]. Table 1 summarizes the currently best bounds for two-parametric
values. Concerning the value h(5, 5), the best bounds are 17 ≤ h(5, 5) ≤ 19. The lower bound
h(5, 5) ≥ 17 is witnessed by the set of 16 points with no two disjoint 5-holes (taken from
Hosono and Urabe [21]), which is depicted Figure 1, and the upper bound h(5, 5) ≤ 19 was
shown by Bhattacharya and Das [6] by an elaborate case distinction.

2 3 4 5
2 4 5 6 10
3 6 7 10
4 9 12
5 17∗

Table 1 Values of h(k1, k2) [19, 20, 21, 5]. The entry marked with star (*) is new.

0 0
0 270

140 0
140 270

9 127
9 143

131 127
131 143
34 117
34 153

106 117
106 153
59 85
59 185
81 85
81 185

Figure 1 A set of 16 points with no two disjoint 5-holes. This point set and the one by Hosono
and Urabe [21, Figure 3] are of the same order type (see Section 4.1 for the definition of order type).
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As our main result of this paper, we determine the precise value of h(5, 5). The proof is
based on a SAT model which we later describe in Section 5.

I Theorem 2.1 (Computer-assisted). Every set of 17 points contains two disjoint 5-holes,
hence h(5, 5) = 17.

We remark that the computations for verifying Theorem 2.1 take about two hours on a
single 3GHz CPU using a modern SAT solver such as glucose [3] or picosat [7]. Moreover, we
have verified the output of glucose and picosat with the proof checking tool DRAT-trim [34].

3 Three Disjoint Holes

For three parameters, most values h(k1, k2, k3) for k1, k2, k3 ≤ 4 and also the values h(2, 3, 5) =
11 and h(3, 3, 5) = 12 are known [21, 35]. Tables 2 and 3 summarize the currently best known
bounds for three-parametric values.

2 3 4
2 8 9 11
3 10 12
4 14

Table 2 Values of h(k1, k2, 4) [21, 35].

2 3 4 5
2 10 11 11..14 17∗

3 12 13..14 17..19∗

4 15..17 17..23∗

5 22∗..27∗

Table 3 Bounds for h(k1, k2, 5) [21, 35].

We now use Theorem 2.1 to derive new bounds on the value h(k, 5, 5) for k = 2, 3, 4, 5.

I Corollary 3.1. We have

h(2, 5, 5) = 17, 17 ≤ h(3, 5, 5) ≤ 19, 17 ≤ h(4, 5, 5) ≤ 23, and 22 ≤ h(5, 5, 5) ≤ 27.

Proof. To show h(2, 5, 5) ≤ 17, observe that, due to Theorem 2.1, every set of 17 points
contains two disjoint 5 holes that are separated by a line `. By the pigeonhole principle there
are at least 9 points on one of the two sides of such a separating line `. Again, using a SAT
instance similar to the one for Theorem 2.1, one can easily verify that every set of 9 points
with a 5-hole also contains a 2-hole which is disjoint from the 5-hole. We remark that also
the order type database of 9 points can be used to verify this statement.

Similarly we show h(3, 5, 5) ≤ 19: Every set of 19 points contains two disjoint 5-holes
that are separated by a line `. Now there are at least 10 points on one side of `, and since
h(3, 5) = 10, there is a 3-hole and a 5-hole that are disjoint on that particular side.

An analogous argument shows h(4, 5, 5) ≤ 2 · h(4, 5)− 1 = 23.
The point set from Figure 2 shows h(5, 5, 5) > 21, while h(5, 5, 5) ≤ h(5)+h(5, 5) = 27. J

4 Encoding with Triple Orientations

We describe how point sets and disjoint holes can be encoded only using triple orientations.
This combinatorial description allows us to get rid of the actual point coordinates and to
only consider a discrete parameter-space. This is essential for our SAT model of the problem.
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0 161014
437034 595949
326347 343801
284425 294548
368806 311583
359850 306967
303825 276373
295136 271265
384946 285229
410465 282863
385025 275150
280383 244110
288858 238662
432159 221931
383508 211334
343366 205440
352134 200469
273710 191231
383027 201270
337326 179552
595182 0

Figure 2 A set of 21 points with no three disjoint 5-holes.

4.1 Triple Orientations
Given a set of points S = {s1, . . . , sn} with si = (xi, yi), we say that the triple (a, b, c) is
positively (negatively) oriented if

χabc := sgn det

 1 1 1
xa xb xc

ya yb yc

 ∈ {−1, 0,+1}

is positive (negative). Note that χabc = 0 indicates collinear points, in particular, χaaa =
χaab = χaba = χbaa = 0. It is easy to see, that convexity is a combinatorial rather than a
geometric property since k-gons can be described only by the relative position of the points: If
the points s1, . . . , sk are the vertices of a convex polygon (ordered along the boundary), then,
for every i = 1, . . . , k, the cyclic order of the other points around si is si+1, si+2, . . . , si−1
(indices modulo k). Similarly, one can also describe containment (and thus k-holes) only
using relative positions: A point s0 lies inside a convex polygon if the cyclic order around s0
is precisely the order of the vertices along the boundary of the polygon.

To observe that the disjointness of two point sets can be described solely using triple
orientations, suppose that a line ` separates point sets A and B. Then, for example by
rotating `, we can find another line `′ that contains a point a ∈ A and a point b ∈ B and
separates A \ {a} and B \ {b}. In particular, we have χaba′ ≤ 0 for all a′ ∈ A and χabb′ ≥ 0
for all b′ ∈ B, or the other way round. Altogether, the existence of disjoint holes can be
described solely using triple orientations.

Even though, for fixed n ∈ N, there are uncountable possibilities to choose n points from
the Euclidean plane, there are only finitely many equivalence classes of point sets when point
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sets inducing the same orientation triples are considered equal. As introduced by Goodman
and Pollack [16], these equivalence classes are called order types.

4.2 An Abstraction of Point Sets
Consider a point set S = {s1, . . . , sn} where s1, . . . , sn have increasing x-coordinates. Using
the unit paraboloid duality transformation, which maps point s = (a, b) to line s∗ : y = 2ax−b,
we obtain the arrangement of dual lines S∗ = {s∗1, . . . , s∗n}, where the dual lines s∗1, . . . , s∗n
have increasing slopes. By the increasing x-coordinates and the properties of the unit
paraboloid duality (see e.g. [24, Chapter 1.3]), the following three statements are equivalent:

(i) The points si, sj , sk are positively oriented.
(ii) The point sk lies above the line sisj .
(iii) The intersection-point of the two lines s∗i and s∗j lies above the line s∗k.
Due to Felsner and Weil [14] (see also [4]), for every 4-tuple si, sj , sk, sl with i < j < k < l

the sequence
χijk, χijl, χikl, χjkl

(index-triples are in lexicographic order) changes its sign at most once. These conditions are
the signotope axioms. It is worth to note that the signotope axioms are necessary conditions
but not sufficient for point sets. There exist χ-configurations which fulfill the conditions
above – so-called abstract point sets, abstract order types, abstract oriented matroids (of
rank 3), or signotopes – that are not induced by any point set, and in fact, deciding whether
an abstract point set has a realizing point set is known to be ∃R-complete (see e.g. [13]).

4.3 Increasing Coordinates and Cyclic Order
In the following, we see why we can assume, without loss of generality, that in every point
set S = {s1, . . . , sn} the following three conditions hold:

the points s1, . . . , sn have increasing x-coordinates,
in particular, s1 is an extremal point, and
the points s2, . . . , sn are sorted around s1.

When modeling a computer program, one can use these constraints (which do not affect
the output of the program) to restrict the search space and to possibly get a speedup. This
idea, however, is not new and was already used for the generation of the order type database,
which provides a complete list of all order types of up to 11 points [24, 1, 2].

I Lemma 4.1. Let S = {s1, . . . , sn} be a point set where s1 is extremal and s2, . . . , sn are
sorted around s1. Then there is a point set S̃ = {s̃1, . . . , s̃n} of the same order type as S (in
particular, s̃2, . . . , s̃n are sorted around s̃1) such that s̃1, . . . , s̃n have increasing x-coordinates.

Proof. We can assume s1 = (0, 0) and xi, yi > 0 for i ≥ 2 – otherwise we can apply
an affine-linear transformation. Moreover, xi/yi is increasing for i ≥ 2 since s2, . . . , sn

are sorted around s1. Since S is in general position, there is an ε > 0 such that S and
S′ := {(0, ε)}∪{s2, . . . , sn} are of the same order type. We apply the projective transformation
(x, y) 7→ (x/y,−1/y) to S′ to obtain S̃. By the multilinearity of the determinant, we obtain

det

 1 1 1
xi xj xk

yi yj yk

 = yi · yj · yk · det

 1 1 1
xi/yi

xj/yj
xk/yk

−1/yi
−1/yj

−1/yk

 .
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Since the points in S′ have positive y-coordinates, S′ and S̃ have the same triple orientations.
Moreover, as x̃i = x′

i/y′
i is increasing for i ≥ 1, the set S̃ fulfills all desired properties. J

5 SAT Model

The basic idea to prove Theorem 2.1 is to assume – towards a contradiction – that a point set
S = {s1, . . . , s17} with no two disjoint 5-holes exists. We formulate a SAT instance, where
boolean variables indicate whether triples are positively or negatively oriented and clauses
encode the necessary conditions described in Section 4. To be precise, we also have auxiliary
variables, e.g., to indicate whether 4 points are in convex position and whether 3 points form
a 3-hole. A detailled description of our SAT model can be found in the full version [30] and
the source code of our python program is available online on our supplemental website [29].

Using a SAT solver we verify that the SAT instance has no solution and conclude that
the point set S does not exist. This contradiction then completes the proof of Theorem 2.1.

It is folklore that satisfiability is NP-hard in general, thus it is challenging for SAT solvers
to terminate in reasonable time for certain inputs of SAT instances. We now highlight the
two crucial parts of our SAT model, which are indeed necessary for reasonable computation
times: First, due to Lemma 4.1, we can assume without loss of generality that the points
are sorted from left to right and also around the first point s1. Second, we teach the solver
that every set of 10 points gives a 5-hole, that is, h(5) = 10 [17]. By dropping either of these
two constraints (which only give additional information to the solver and do not affect the
solution space), none of the tested SAT solvers terminated within days.

6 Final Remarks

Interior-disjoint Holes: Two holes X1, X2 are called interior-disjoint if their respective
convex hulls are interior-disjoint [10, 28, 9, 8, 22]. In a recent article, Hosono and Urabe [22]
summarized the current status and presented some new results. By slightly adapting the
SAT model from Section 5, we managed to show that every set of 15 points contains two
interior-disjoint 5-holes; this further improves their result [22, Theorem 3].

Classical Erdős–Szekeres: The computation time for the computer assisted proof by Szek-
eres and Peters [32] for g(6) = 17 was about 1500 hours. By slightly adapting the model
from Section 5 we have been able to confirm g(6) = 17 using glucose and DRAT-trim with
about one hour of computation time.
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