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Abstract1

Given a simple polygon, two points in its interior are said to be hidden to each other if the straight2

line segment connecting them intersects the exterior of the polygon. We study the Maximum3

Hidden Vertex Set problem, where given a simple polygon, we are required to find a subset of4

vertices of maximum cardinality such that every pair of them are hidden to each other. This5

problem is known to be NP-hard, and in fact also APX-hard. In this paper we present a O(n2)6

time algorithm to compute a 1/4-approximation to the maximum hidden vertex set of a simple7

polygon. Although exact algorithms are known for some special classes of polygons (such as8

polygons that are weakly visible from a convex edge), to the best of our knowledge this is the9

first deterministic polynomial-time algorithm to compute a constant-factor approximation to the10

optimal solution for general simple polygons without holes.11
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1 Introduction12

Visibility problems are some of the most prominent and intensively studied problems in13

Computational Geometry. Since the classic Art Gallery Problem was proposed in 1973 by14

Victor Klee, many extensions have been studied [11, 15, 9], and combinatorial as well as15

computational results have been applied to practical problems that can commonly be found16

in computer generated graphics [4], computer vision [6], and robotics [10].17

A well known class of visibility problems are those related to hiding. Given a simple18

polygon, we say that two points in its interior are visible to each other if the line segment19

connecting the points does not intersect the exterior of the polygon. Conversely, the points20

are said to be hidden to each other if they are not mutually visible. In this paper we study21

the so called Maximum Hidden Vertex Set (MHVS) problem, where given a simple polygon22
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P , we want to find a subset of vertices of maximum cardinality such that every pair of them23

are hidden to each other.24

The MHVS problem, which can also be looked upon as the problem of computing a25

maximum independent set in the vertex visibility graph of P , is known to be NP-hard [13].26

It is in fact not even easy to find an approximate solution. It was shown to be APX-hard27

by Eidenbenz [5] even in polygons with no holes. Nevertheless, an exact solution can be28

computed in polynomial time for special classes of simple polygons. A maximum hidden29

vertex set can be computed in O(n2) time in a polygon weakly visible from a convex edge [7]30

(we describe weakly visible polygons in Section 2), and in O(ne) time in the class of so called31

convex fans, where e is the number of edges of their vertex visibility graph [8]. Heuristic-based32

algorithms have also been explored which seem to work well in practice, as evidenced by33

experimental results showing that they provide solutions that are usually quite close to the34

exact solution for input polygons without holes [1]. Recently, there has also been a study on35

gender-aware facility location problems [12], which are closely related to the MHVS problem.36

In this paper, we describe a deterministic O(n2) time algorithm to compute a 1/4-37

approximation to the maximum hidden vertex set of an n-sided simple polygon with no holes.38

As far as we are aware, this is the first deterministic algorithm to compute a constant-factor39

approximation to the optimal solution of the MHVS problem for general simple polygons.40

2 Preliminaries41

Hereafter, let P be a simple polygon with no holes. For the sake of simplicity, we assume42

that no three vertices of P are collinear. Given a point x inside P , we denote with VP(x)43

the visibility polygon of x. The boundary of VP(x) is a closed polygonal chain formed44

by polygonal edges and non-polygonal edges called constructed edges. A constructed edge45

connects a reflex vertex v with a point u lying on an edge of P (see Figure 1a), where the46

points x, v, and u are collinear.47

Let x and y be two points inside P that are visible to each other. A point inside P is said48

to be weakly visible from the line segment xy, if it is visible from at least one point of xy.49

The set of points inside P that are weakly visible from xy is called the weak visibility polygon50

of xy. We denote this polygon with VP(xy). Like the visibility polygon of a point, the51

boundary of VP(xy) is a closed polygonal chain formed by polygonal edges and constructed52

edges. If the boundary of VP(xy) contains no constructed edges, then VP(xy) = P and the53

polygon is said to be weakly visible from xy (see Figure 1b).54

Let ∂P denote the boundary of P . Given two points a, b ∈ ∂P , let bd(a, b) denote the61

clockwise boundary of P from a to b, so we have ∂P = bd(a, a) = bd(a, b) ∪ bd(b, a). Consider62

a point x inside P and a constructed edge vu of VP(x), where v is a vertex and u is a point on63

an edge of P . The segment vu divides P into two subpolygons: one bounded by bd(v, u) ∪ vu64

and the second one bounded by bd(u, v) ∪ vu. Out of these two, the subpolygon that does65

not contain x is called a pocket of VP(x). We denote this pocket with P (v, u). If x is not66

contained in the polygon bounded by bd(v, u) ∪ vu, then vu is called a left constructed edge67

and P (v, u) is called a left pocket. Otherwise, vu is called a right constructed edge and P (v, u)68

is called a right pocket. The constructed edges and left and right pockets of a weak visibility69

polygon are defined in a similar way. Examples of these definitions are shown in Figure 1. In70

particular, in Figure 1a the segment vu is a left constructed edge and P (v, u) is a left pocket71

of VP(x). On the other hand, in Figure 1b the segment vu is a right constructed edge and72

P (v, u) is a right pocket of VP(xy).73
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(a) The visibility polygon of x.55

x
y

u

v

(b) The weak visibility polygon of xy.56

Figure 1 A simple polygon along with (a) the visibility polygon of a point, and (b) the weak
visibility polygon of a line segment, both in gray. The constructed edges of the visibility polygons
are shown in dashed lines, the left pockets in yellow, and the right pockets in red. The polygon is
weakly visible from the thick edge.
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I Lemma 2.1 (Lemma 2 from Bärtschi et al. [2]). Let v1u1 and v2u2 be two left constructed74

edges (or similarly, two right constructed edges) of VP(xy), where v1 and v2 are reflex vertices75

of P . Possibly excluding v1 and v2, the vertices of P inside the left (or right) pocket P (v1, u1)76

are hidden from the vertices of P inside the left (or right) pocket P (v2, u2).77

3 The polygon partition78

Our algorithm is based on a link-distance-based partition from Bhattacharya et al. [3] (which79

is itself adapted from the partitioning method used by Suri [14]) that decomposes the polygon80

P into a set of disjoint visibility windows. We next outline how this partition is constructed81

and describe properties that are relevant to our algorithm.82

Given two points x and y inside P , the link distance from x to y is the minimum number of83

line segments required in a polygonal chain inside P to connect x to y. The visibility window84

decomposition is a hierarchical partition of P into visibility polygons, where polygons on the85

same level contain points at the same link distance from a given vertex p. The first level86

of the hierarchy is formed by the set V1 = {VP(p)} that contains the points of P at link87

distance one from p. Let v1u1, . . . , vcuc be the constructed edges of VP(p) in clockwise order88

around p, where vi is a vertex and ui is a point lying on an edge of P . The region P \ VP(p)89

consists of c disjoint polygons we denote with P1, . . . , Pc. Let V2,i = VP(viui) ∩ Pi be the90

weak visibility polygon of viui inside Pi. The second level of the hierarchy is formed by91

the set V2 = {V2,1, . . . , V2,c} of disjoint weak visibility polygons. The remaining levels are92

formed by the sets V3, V4, . . . obtained by repeating the previous process until we have a93

set Vd of disjoint weak visibility polygons with no constructed edges. We thus have that94

P = V1 ∪ · · · ∪ Vd = VP(p) ∪ V2,1 ∪ V2,2 ∪ · · · ∪ Vd,1 ∪ Vd,2 ∪ · · · . The set Vi is formed by the95

disjoint regions containing the points at link distance i from p, and d is the maximum link96

distance from p to any point inside P (see Figure 2).97

I Lemma 3.1. The following statements hold true for the visibility window partition of P :100

i) The vertices of P lying in any subpolygon belonging to Vi are hidden from the vertices of101

P lying in any subpolygon belonging to Vj, unless |j − i| ≤ 1.102

ii) Let uv be a constructed edge of the weak visibility polygon Vi,j. Then, the constructed103

edge uv is actually a convex edge with respect to every subpolygon Vi+1,j = VP(uv) ∪ Pj.104

EuroCG’19
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Figure 2 The partition of a simple polygon into weak visibility subpolygons, where each subpoly-
gon consists of points at the same link distance from the vertex p.
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Proof. The lemma follows directly from the construction of the partition. For details, please105

refer to the proof of Lemma 2 from Bhattacharya et al. [3]. J106

4 The algorithm107

We now describe an O(n2) time 1/4-approximation algorithm for the Maximum Hidden108

Vertex Set problem in simple polygons. The overall strategy of our algorithm is to decompose109

P into regions as we described in Section 3, and classify the regions of the partition into four110

disjoint sets such that vertices of regions belonging to different sets are hidden to each other.111

We then compute the (exact) maximum hidden set of every region using the algorithm from112

Ghosh et al. [7], and keep the hidden set with more guards in the same group. Hereafter, we113

denote by n the number of vertices of P .114

1. Partition the polygon P using link distance115

Create the decomposition of P based on the link-distance from an arbitrary vertex that116

we described in Section 3. This partition can be created in O(n) time [3].117

2. Classify visibility windows118

As P is a simple polygon without any holes, the dual graph of the partition is a tree.119

Each node of this tree represents a visibility polygon of the partition, and the children of120

a node are the regions inside the pockets formed by constructed edges belonging to their121

parent’s visibility polygon. Using this tree, we separate the nodes into four disjoint sets122

in the following manner. First we separate the nodes into two sets: those appearing at123

odd levels in the tree, and those appearing at even levels in the tree. Then, we further124

separate the nodes in each of the above sets into two subsets: those created due to a left125

constructed edge, and those created due to a right constructed edge. At the end of this126

separation process, we obtain four disjoint subsets, which are as follows:127

R1, containing regions at odd levels in the tree created by a left constructed edge128

R2, containing regions at odd levels in the tree created by a right constructed edge129

R3, containing regions at even levels in the tree created by a left constructed edge130

R4, containing regions at even levels in the tree created by a right constructed edge131
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Observe that the vertices of P inside different regions of the same set are hidden from132

each other (see Figure 3), either because they belong to non-consecutive levels of the tree133

(see Lemma 3.1), or because both of them belong to the same level in the tree and are134

both created by a left (or right) constructed edge (see Lemma 2.1). Also note that the135

separation process can be completed in O(n) time.136

p

R1

R2

R4

R3

Figure 3 The separation of the regions into four independent sets.137

3. Compute an approximate maximum hidden vertex set138

Observe that each region of the partition is a polygon which is weakly visible from the139

constructed edge (of its parent’s visibility polygon) that created it. So, within each region,140

we can compute the (exact) maximum hidden set of vertices using the algorithm by141

Ghosh et al. [7], which computes the maximum hidden set of a weak visibility polygon142

with n vertices in O(n2) time.143

Since the vertices of P inside two regions belonging to the same set (from among144

R1, R2, R3, R4) are hidden from each other, the union of the maximum hidden sets of the145

regions in a particular set is a valid hidden set for P . Thus, we can compute four valid146

hidden sets S1, S2, S3, S4, that correspond to the sets R1, R2, R3, R4 respectively, in O(n2)147

time. Out of these four valid hidden vertex sets of P , we choose as our approximation of148

the maximum hidden set the one containing the most number of vertices.149

Let Sopt denote an exact maximum hidden vertex set of P . Also, let Sopti,j ⊆ Sopt denote
the subset of vertices that lie within the weak visibility subpolygon Vi,j in the partitioning
of P . If we denote the exact maximum hidden set computed for each subpolygon Vi,j by
S∗

i,j , then observe that |S∗
i,j | ≥ |S

opt
i,j |. Therefore, we have:

|S1|+ |S2|+ |S3|+ |S4| =
∑
i,j

|S∗
i,j | ≥

∑
i,j

|Sopt
i,j | = |Sopt|

max (|S1|, |S2|, |S3|, |S4|) ≥
|S1|+ |S2|+ |S3|+ |S4|

4 ≥ |Sopt|4
Therefore, by choosing from among S1, . . . , S4 the set containing the maximum number150

of vertices, we obtain a 1
4 -approximation of Smax. Note that Step 3 is the most expensive151

EuroCG’19
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step of the algorithm described above, so the algorithm runs in O(n2) time. This leads us to152

our main result, which we summarize below.153

I Theorem 4.1. Given a simple polygon P with n vertices, there exists a 1
4 -approximation154

algorithm for computing the maximum hidden vertex set in P , which runs in O(n2) time.155

5 Concluding remarks156

We present a O(n2) time algorithm to compute a 1/4-approximation to the maximum hidden157

vertex set of a simple polygon with n vertices and no holes. To the best of our knowledge,158

this is the first constant-factor approximation algorithm for general simple polygons without159

holes. Observe that our current algorithm cannot be applied when the input polygon P160

has holes, since then the dual graph of the visibility window partitioning of P is no longer161

guaranteed to be a tree. However, we are currently investigating possible improvements to162

our algorithm which could make it work even for input polygons containing holes. Another163

future research direction is to explore variants of the problem involving restricted-orientation164

models of visibility, such as rectangular, periscope, or O-visibility.165
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