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Abstract
Let P be a histogram with n vertices, i.e., an x-monotone orthogonal polygon whose upper
boundary is a single edge. Two points p, q ∈ P are co-visible if and only if the (axis-parallel)
bounding rectangle of p and q is in P . In the r-visibility graph of P , we connect two vertices of P
with an unweighted edge if and only if they are co-visible. We consider routing with preprocessing
in P . We may preprocess P to obtain a label and a routing table for each vertex of P . Then, we
must be able to route a packet between any two vertices s and t of P , where each step may use
only the label of the target node t, the routing table, and the neighborhood of the current node.

We present a routing scheme for histograms that sends any data packet along a shortest path.
Each label needs O(logn) bits, while the routing table of each node consists of a single bit.

1 Introduction

The routing problem is a classic question in distributed graph algorithms [15, 22]. We have
a graph G and would like to preprocess it for the following task: route a data packet located
at some source vertex s to a target vertex t, given by its label – a bit string that identifies
the node in the network. The routing should have the following properties: (A) locality: to
determine the next step of the packet, it should use only information available locally at the
current vertex. The most important local information consists of a routing table for each
vertex; (B) efficiency: the packet should travel along a path whose length is not much larger
than the length of a shortest path between s and t. The ratio between the length of this
routing path and a shortest path is called the stretch factor ; and (C) compactness: the space
requirements for labels and routing tables should be small. Storing the complete shortest
path tree of v in every node v of G leads to a perfect efficiency but lacks compactness.

There are many compact routing schemes for general graphs [1, 2, 11–13, 23, 24]. For
example, the scheme by Roditty and Tov [24] needs to store a poly-logarithmic number of
bits in the packet header and it routes a packet from s to t on a path of length O

(
k∆+m1/k

)
,

where ∆ is the shortest path distance between s and t, k > 2 is any fixed integer, n is the
number of nodes, and m is the number of edges. The local routing tables use mnO(1/

√
log n)

space. In the late 1980’s, Peleg and Upfal [22] proved that in general graphs, any routing
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Figure 1 The boundary of a histogram has an x-monotone chain and a single horizontal edge.

scheme with constant stretch factor must store Ω(nc) bits per vertex, for some constant
c > 0. Thus, it is natural to focus on special graph classes to obtain better routing schemes.
For instance, there are compact and efficient routing schemes for trees, planar graphs, unit
disk graphs, and metric spaces with bounded doubling dimension [14,18,19,25–27,29].

Another approach is geometric routing: the graph resides in a geometric space, and
the routing algorithm has to determine the next vertex for the packet purely based on the
local geometric information (and possibly the packet header), see for instance [9, 10] and
the references therein. There are no routing tables. In a recent result, Bose et al. [10] show
that when vertices do not store any routing tables, no geometric routing scheme can achieve
stretch factor o(

√
n). This lower bound applies irrespective of the header size.

We consider routing in visibility graphs of polygons. Banyassady et al. [3] presented an
efficient and compact routing scheme for polygonal domains assuming Euclidean weights.
They ask whether there is an efficient routing scheme for visibility graphs with unit weights,
arguably a more applied setting. We address this open problem by combining the two
approaches of geometric and compact routing: we use routing tables at the vertices to
represent information about the structure of the graph, but we also assume that the labels of
all adjacent vertices are stored in a link table and are therefore available for each node. This
is reasonable from a practical point of view. The link table is not part of the routing table
and the size of this list is not relevant for the compactness, since it depends purely on the
graph and cannot be influenced during preprocessing. We focus on r-visibility (rectilinear-
visibility) graphs of histograms: a histogram P is an orthogonal polygon bounded by an
x-monotone polygonal chain and a single horizontal line segment, see Figure 1. Two vertices
v, w in P are connected in the r-visibility graph G(P ) by an unweighted edge if and only if
the axis-parallel rectangle spanned by v and w is contained in the (closed) region P . Even
this seemingly simple case turns out to be quite challenging and reveals the whole richness
of the compact routing problem in unweighted, geometrically defined graphs. Furthermore,
histograms constitute a natural starting point, since they are crucial building blocks in many
visibility problems; see, for instance, [4–8, 17]. In addition, r-visibility is a popular concept
that enjoys many useful structural properties, see, e.g., [16, 17,20,21,28].

We present a routing scheme for G(P ) with label size 2 · dlogne, routing table size 1 and
stretch 1, i.e., we route on a shortest path.
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Figure 2 The interval I(v) as well as left, right, and corresponding vertices.

2 Preliminaries

Routing schemes. Let G = (V,E) be an undirected, unweighted, simple, connected graph.
The (closed) neighborhood of a vertex v ∈ V , N(v), is the set containing v and its adjacent
nodes. The length of a path π in G is denoted by |π|. Moreover, for v, w ∈ V , we let d(v, w)
denote the length of a shortest path in G with endpoints v and w.

We define a routing scheme. Every node v is assigned a label lab(v) ∈ {0, 1}∗ to identify
v in the network and a routing table ρ(v) ∈ {0, 1}∗ storing relevant properties of G. Labels
and routing tables are chosen during preprocessing. Moreover, every node has a link table—a
list of the labels of N(v). The algorithm to find the next step of a packet is modeled by
a routing function f :

(
{0, 1}∗)3 → V . The function uses the link and routing table at a

current node s as well as the label lab(t) of the target node t to determine a next node v
adjacent to s where the packet is forwarded to. The routing scheme is correct if the following
holds: for any s, t ∈ V , let p0 = s and pi+1 = f

(
lab

(
N(pi)

)
, ρ(pi), lab(t)

)
, for i ≥ 0. Then,

there is a k = k(s, t) ≥ 0 with pk = t and pi 6= t, for i < k. The routing scheme reaches t in
k steps. We call π : 〈p0, . . . , pk〉 the routing path from s to t. The routing distance is k(s, t).

The various pieces of information used for the routing should be small. This is measured
by the label and routing table size. The routing path should be as small as possible. This is
measured by the stretch—the ratio of the lengths of the routing and the shortest path.

Polygons. Let P be an x-monotone orthogonal polygon in general position with n vertices
V (P ). No three vertices in V (P ) lie on a horizontal line. We call P a histogram if the upper
boundary is a single horizontal base edge. Its endpoints are the base vertices. The vertices
of P are indexed counterclockwise from 0 to n − 1 starting at the left base vertex. For
v ∈ V (P ), we write vx for the x-coordinate, vy for the y-coordinate, and vid for the index.

We consider the r-visibility graph G(P ) =
(
V (P ), E(P )

)
of P : there is an edge between

two vertices v, w ∈ V (P ) if they are co-visible, i.e., the axis-aligned rectangle spanned by v
and w is in (the closed set) P . We call d(v, w) the hop distance between two vertices in v, w.

Next, we classify the vertices of P . A vertex v in P is incident to exactly one horizontal
edge h. We call v a left vertex if it is the left endpoint of h; otherwise, v is a right vertex.
Furthermore, v is convex if the interior angle at v is π/2; otherwise, v is reflex. Accordingly,
every vertex of P is either `-convex, r-convex, `-reflex, or r-reflex.

Visibility Landmarks. Let P be a histogram. We associate with each v ∈ V (P ) three
landmark vertices in P ; see Figure 2. The corresponding vertex of v, cv(v), shares the same
horizontal edge with v. The left bounding vertex of v, `(v), is the leftmost visible vertex
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Figure 3 The near and the far dominators. Observe that fd(s, t3) is not a vertex.

from v closest to the base edge, i.e., `(v) = argmin{wid | w ∈ N(v)}. The right bounding
vertex of v, r(v), is defined analogously, i.e., r(v) = argmax{wid | w ∈ N(v)}.

Let v, w ∈ V (P ). The interval [v, w] is the set of vertices in P whose x-coordinates lie
between those of v and w, i.e., [v, w] =

{
u ∈ V (P ) | vx ≤ ux ≤ wx

}
. By general position,

this corresponds to index intervals. More precisely, if v is either an r-reflex vertex or the left
base vertex and w is either `-reflex or the right base vertex, then [v, w] =

{
u ∈ V (P ) | vid ≤

uid ≤ wid
}
. The set I(v) = [`(v), r(v)] is called the interval of v. We have N(v) ⊆ I(v).

Let s and t be two vertices with t ∈ I(s) \ N(s). We define two more landmarks for
s and t. Assume sx < tx, the other case is symmetric. The near dominator nd(s, t) of t
with respect to s is the rightmost vertex in N(s) that is not to the right of t. If there is
more than one such vertex, nd(s, t) is the vertex closest to the base line. The far dominator
fd(s, t) of t with respect to s is the leftmost vertex in N(s) that is no to the left of t. If
there is more than one such vertex, fd(s, t) is the vertex closest to the base line. The interval
I(s, t) =

[
nd(s, t), fd(s, t)

]
has all vertices between the near and far dominator; see Figure 3.

3 Visibility and Paths

Let P be a histogram. We present some observations on the visibility in P . Then, we analyze
the structure of (shortest) paths in a histograms. We omit the proofs for space reasons.

I Observation 3.1. Let v ∈ V (P ) be r-reflex or the left base vertex, and let u ∈ [v, r(v)] be
a vertex distinct from v and r(v). Then, I(u) ⊆ [v, r(v)].

I Observation 3.2. Let v ∈ V (P ) be a left (right) vertex distinct from the base vertex.
Then, v can see exactly two vertices to its right (left): cv(v) and r(v) (`(v)).

The following lemma identifies some vertices that must appear on any path; see Figure 4.

I Lemma 3.3. Let v, w ∈ V (P ) be co-visible vertices such that v is either r-reflex or the
left base vertex and w is either `-reflex or the right base vertex. Let s and t be two vertices
with s ∈ [v, w] and t /∈ [v, w]. Then, any path between s and t includes v or w.

The next lemma shows that if t /∈ I(s), there is a shortest path from s to t that uses the
higher vertex of `(s) and r(s); see Figure 4.

I Lemma 3.4. Let s and t be two vertices with t /∈ I(s). If `(s)y > r(s)y (`(s)y < r(s)y),
then there is a shortest path from s to t using `(s) (r(s)).

The next lemma considers the case where t is in I(s). Then, the near and far dominator are
the potential vertices that lie on a shortest path from s to t.
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Figure 5 The breakpoints of some vertices.

I Lemma 3.5. Let s and t be two vertices with t ∈ I(s) \N(s). Then, nd(s, t) is reflex and
either fd(s, t) = `(nd(s, t)) or fd(s, t) = r(nd(s, t)).

4 The Routing Scheme

Let P be a histogram, |V (P )| = n. Our approach is as follows: as long as a target vertex t
is not contained in the interval I(s) of a current vertex s, i.e., as long as there is a higher
vertex blocking visibility between s and t, we have to leave the current pocket as quickly as
possible. Once we have reached a high enough spike, we find the pocket containing t.

Labels and routing tables. Let v be a vertex. If v is convex and not a base vertex we
let lab(v) = vid. Otherwise, suppose that v is an r-reflex vertex or the left base vertex.
The breakpoint of v, br(v), is the left endpoint of the horizontal edge with the highest y-
coordinate to the right of and below v visible from v; analogous definitions apply to `-reflex
vertices and the right base vertex; see Figure 5. We set lab(v) = (vid, br(v)id). The routing
table ρ(v) stores one bit, indicating whether `(v)y > r(v)y, or not.

The routing function. We are given the current vertex s and the label lab(t) of the target
vertex t. If t is visible from s, i.e., if lab(t) ∈ lab(N(s)), we directly go from s to t. Thus,
assume t /∈ N(s). First, we check t ∈ I(s) as follows: we determine the smallest and largest
id in the link table of s, i.e., we determine `(s)id and r(s)id and check tid ∈ [`(s)id, r(s)id],
which is the case if and only if t ∈ I(s). There are two cases, illustrated in Figure 6.

First, assume t /∈ I(s). If ρ(s) indicates `(s)y > r(s)y, we take the hop to `(s); otherwise,
we take the hop to r(s). By Lemma 3.4, this hop is on a shortest path from s to t.

Second, suppose that t ∈ I(s) \N(s). This case is a bit more involved. We use the link
table of s and the label of t to determine fd(s, t) and nd(s, t). Again, we can do this by
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Figure 6 The cases where the vertex t lies and the vertices where the data packet is sent to.

comparing the ids. Lemma 3.5 states that either fd(s, t) = `(nd(s, t)) or fd(s, t) = r(nd(s, t)).
We discuss the case that fd(s, t) = r(nd(s, t)), the other case is symmetric. By Lemma 3.3,
any shortest path between s and t includes fd(s, t) or nd(s, t). Moreover, due to Lemma 3.5,
nd(s, t) is reflex, and we can use its label to access bid = br(nd(s, t))id. The vertex b splits
I(s, t) = [nd(s, t), fd(s, t)] into two disjoint subintervals [nd(s, t), b] and [cv(b), fd(s, t)]. Also,
b and cv(b) are not visible from s, as they are located strictly between the far and the near
dominator. Based on bid, we can now decide on the next hop.

If t ∈ [nd(s, t), b], we take the hop to nd(s, t). If t = b, our packet uses a shortest path.
Assume that t lies between nd(s, t) and b. Then, b is `-reflex and we can apply Lemma 3.3
to see that any shortest path from s to t includes nd(s, t) or b. But since d(s, b) = 2, our
data packet routes along a shortest path. If t ∈ [cv(b), fd(s, t)], we take the hop to fd(s, t).
The argument is similar. The following theorem summarizes our discussion.

I Theorem 4.1. Let P be a histogram with n vertices. There is a routing scheme for G(P )
with label size 2 · dlogne, routing table size 1, and stretch 1.

5 Conclusion

We gave the first routing scheme for the hop-distance in simple polygons. In particular, we
have a routing scheme for histograms with label size 2 · dlogne, routing table size 1, and
stretch 1. As we show in the full version, our method also extends to more general double
histograms. The following open problems arise naturally. First, it would be interesting to
see how the routing scheme extends to monotone polygons as well as arbitrary orthogonal
polygons, assuming r-visibility. After that, it will be interesting to take a closer look at (or-
thogonal) polygons assuming the more common notion of l-visibility (line-visibility). Here,
the structure of visibility—even in simple histograms—is much more complicated and we
can no longer assume integer coordinates.
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