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Abstract
We study Hamiltonicity for some of the most general variants of Delaunay and Gabriel graphs.
Let S be a point set in the plane. The k-order Delaunay graph of S, denoted k-DGC(S), has
vertex set S and edge pq provided that there exists some homothet of C with p and q on its
boundary and containing at most k points of S different from p and q. The k-order Gabriel
graph k-GGC(S) is defined analogously, except for the fact that the homothets considered are
restricted to be smallest homothets of C with p and q on its boundary. We provide upper bounds
on the minimum value of k for which k-GGC(S) is Hamiltonian. Since k-GGC(S) ⊆ k-DGC(S),
all results carry over to k-DGC(S). In particular, we give upper bounds of 24 for every C and
15 for every point-symmetric C. We also improve the bound to 7 for squares, 11 for regular
hexagons, 12 for regular octagons, and 11 for even-sided regular t-gons (for t ≥ 10).

1 Introduction

The study of the combinatorial properties of geometric graphs has played an important role
in the area of Discrete and Computational Geometry. One of the fundamental structures
that has been studied intensely is the Delaunay triangulation of a planar point set (see [9]
for an encyclopedic treatment of this structure). It was conjectured by Shamos [10] that the
Delaunay triangulation contains a Hamiltonian cycle. This was disproved by Dillencourt [5].
However, Dillencourt [6] showed that Delaunay triangulations are almost Hamiltonian, in
the sense that they are 1-tough.1

Focus then shifted on determining how much the definition of the Delaunay triangulation
can be loosened to achieve Hamiltonicity. To this end, Chang et al. [4] showed that the
19-Delaunay graph is Hamiltonian.2 Given a planar point set S, the k-Delaunay graph has
vertex set S and edge pq provided that there exists a disk with p and q on the boundary
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1 A graph is 1-tough if removing any k vertices from it results in at most k connected components.
2 According to the definition of k-DG in [4], they showed Hamiltonicity for 20-DG.
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Type of shape C k

Convex 24
Point-symmetric convex 15
Regular octagons 12
Regular hexagons & even-sided regular t-gons, with t ≥ 10 11
Squares 7

Table 1 Obtained upper bounds on the minimum k for which k-GGC(S) is Hamiltonian.

containing at most k points of S different from p and q.3 If the disk with p and q on its
boundary is restricted to disks with pq as diameter, then the graph is called the k-Gabriel
graph and is a subgraph of the k-Delaunay graph. In fact, Chang et al. [4] showed that
the 19-Gabriel graph is Hamiltonian. This was subsequently lowered to k = 15 [1] and the
current best bound is k = 10 [8]. It is conjectured that 1-Delaunay is Hamiltonian [1].

In this article, we generalize the above results by replacing the disk with an arbitrary
convex shape. We show that the k-Gabriel graph is Hamiltonian for any convex shape C
when k ≥ 24, and give improved bounds for various more specific convex shapes. Table 1
summarizes the bounds obtained. Our results rely on tools from metrics and packings.

2 Convex distances and the C-Gabriel graph

Let p and q be two points in the plane. Let C be a compact convex set that contains the
origin, denoted ō, in its interior. The convex distance dC(p, q) is defined in the following way:
If p = q, then dC(p, q) = 0. Otherwise, dC(p, q) = d(p,q)

d(p,q′) , where q
′ is the intersection of the

ray from p to q with the translate of C by the vector −→̄op (see Figure 1). The convex set C is
the unit C-disk of dC with center ō, i.e., every point p in C satisfies that dC(ō, p) ≤ 1. The
C-disk with center c and radius r is defined as the homothet of C centered at c and with
scaling factor r.

p

q

q′1

d

Figure 1 Convex distance from p to q.

The triangle inequality holds: dC(p, q) ≤ dC(p, r) + dC(r, q),∀p, q, r ∈ R2. However, this
distance may not define a metric when C is not point-symmetric4 about the origin, since there
may be points p, q for which dC(p, q) 6= dC(q, p). When C is point-symmetric with respect
to the origin, dC is called a symmetric convex distance function. Such a distance defines a
metric; moreover, dC(ō, p) defines a norm5 of a metric space. In addition, if a point p is on
the line segment ab, then dC(a, b) = dC(a, p) + dC(p, b) (see [2, Chapter 7]).

3 Note that this implies that the standard Delaunay triangulation is the 0-Delaunay graph.
4 A shape C is point-symmetric with respect to a point x ∈ C provided that for every point p ∈ C there is

a corresponding point q ∈ C such that pq ∈ C and x is the midpoint of pq.
5 A function ρ(x) is a norm if: (a) ρ(x) = 0 if and only if x = ō, (b) ρ(λx) = |λ|ρ(x) where λ ∈ R, and (c)
ρ(x+ y) ≤ ρ(x) + ρ(y).
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C

Figure 2 Left: A triangle is a C shape. Center: Ĉ for this triangle is a hexagon. Right: the shape
Ĉ with radius 1

2 does not contain C.

Let S be a set of points in the plane satisfying the following general position assumption:
For each pair p, q ∈ S, any minimum homothet of C having p and q on its boundary does not
contain any other point of S on its boundary. The k-order C-Delaunay graph of S, denoted
k-DGC(S), is the graph with vertex set S such that, for each pair of points p, q ∈ S, the edge
pq is in k-DGC(S) if there exists a C-disk that has p and q on its boundary and contains at
most k points of S different from p and q. When k = 0 and C is a circle, k-DGC(S) is the
standard Delaunay triangulation.

Aurenhammer and Paulini [3] showed how to define a point-symmetric distance function
from any convex shape C, as follows. Denote by Cv the shape C with ō translated by vector v.
The distance from p to q is given by the scaling factor of a smallest homothet containing p
and q on its boundary, which is equivalent to minv∈C dCv

(p, q) = dĈ(p, q) where Ĉ =
⋃

v∈C Cv.
The set Ĉ is a point-symmetric convex set that is the Minkowski sum6 of C and its shape
reflected about its center. For an example, see Figure 2. The diameter and width of Ĉ
is twice the diameter and width of C, respectively. Moreover, when C is point-symmetric,
dĈ(p, q) = dC(p,q)

2 .
We define the k-order C-Gabriel graph of S, denoted k-GGC(S), as the graph with vertex

set S such that, for every pair of points p, q ∈ S, the edge pq is in k-GGC(S) if and only if
there exists a C-disk with radius dĈ(p, q) that has p and q on its boundary and contains at
most k points of S different from p and q. From the definition of k-GGC(S) and k-DGC(S)
we note that k-GGC(S) ⊆ k-DGC(S), and it can be a proper subgraph. See Figure 3 for an
example. Further, when C is not point-symmetric, then Ĉ contains C in its interior; however,
for some shapes it is not true that the Ĉ-disk with radius 1

2 contains C (refer to Figure 2,
right). Thus, for asymmetric shapes C, in general GGĈ * GGC .

3 Hamiltonicity for convex shapes

3.1 General convex shapes
Define H to be the set of all Hamiltoninan cycles of the point set S. Define the dĈ-length
sequence of h ∈ H, denoted dsC(h), as the edge sequence sorted in decreasing order with
respect to the length of the edges in dĈ-metric. Sort the elements of H in lexicographic order
with respect to their dĈ-length sequence, breaking ties arbitrarily. This order is strict. For
h1, h2 ∈ H, if h1 is smaller than h2 in this order, we write h1 ≺ h2.

6 The Minkowski sum of two sets A and B is defined as A⊕B = {a+ b : a ∈ A, b ∈ B}.
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p q

Figure 3 C is a regular hexagon. Edge pq is in 2-DGC(S) but it is not in 2-GGC(S).

a

b

Figure 4 Many C-disks C(a, b) may exist for a and b.

For simplicity, denote by Cr(a, b), a C-disk with radius r containing the points a and b
on its boundary. For the special case of a diametral disk, i.e., when the radius of Cr(a, b)
is dĈ(a, b), we denote it as C(a, b). Note that C(a, b) may not be unique, see Figure 4. In
addition, we denote by DC(c, r) the C-disk centered at point c with radius r.

I Claim 3.1. Let C be a point-symmetric convex shape. Let u be a point in the plane different
from the origin ō. Let r < dC(u, ō). Let p be the intersection point of DC(u, r) and line
segment ōu. Let u′ = λu, with λ > 1 ∈ R, be a point defined by vector u scaled by a factor
of λ. Then DC(u, r) ⊂ DC(u′, dC(u′, p)). (See Figure 5.)

Proof. Let q ∈ DC(u, r); then dC(u, q) ≤ dC(u, p). Since u is on the line segment u′p,
we have that dC(u′, p) = dC(u′, u) + dC(u, p). Hence dC(u′, q) ≤ dC(u′, u) + dC(u, q) ≤
dC(u′, u) + dC(u, p) = dC(u′, p). Therefore, DC(u, r) is contained in DC(u′, dC(u′, p)). J

ō

u

u′

p

DC(u′, dC(u′, p))

DC(u, r)

Figure 5 DC(u, r) is contained in DC(u′, dC(u′, p)), where u′ = λu with λ > 1.
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The approach we follow to prove our bounds, which is similar to the approach in [1, 4, 8],
is to show that the minimum element in H is contained in k-GGC(S) for a small value of k.
Let h be the minimum element in H. Let ab ∈ h; we can assume without loss of generality
that dĈ(a, b) = 1. Let U = {u1, u2, . . . , uk} be the set of points in S different from a and b
that are in the interior of C(a, b).7 We assume that, when traversing h from b to a, we visit
the points of U in order u1, . . . , uk. For each point ui, we define si to be the point preceding
ui in h. See Figure 6.

a

b

C(a, b)

s1
u1

s2

u2

u3

s3

Figure 6 Example of U in C(a, b).

Note that if a point p is in the interior of C(a, b), then there exists a C(p, q) contained in
C(a, b) for any point q on the boundary of C(a, b). Therefore, dĈ(a, ui) < 1 and dĈ(b, ui) < 1
for any i ∈ {1, . . . , k}. Furthermore, we have the following:
I Claim 3.2. Let 1 ≤ i ≤ k. Then dĈ(a, si) ≥ max{dĈ(si, ui), 1}.

Proof. If s1 = b, then dĈ(a, s1) = 1 and dĈ(s1, u1) < 1. Otherwise, we define h′=(h \
{ab, siui})∪{asi, uib}. For the sake of a contradiction, assume that dĈ(a, si)<max{dĈ(si, ui), 1}.
Since dĈ(a, b) = 1, this implies that dĈ(a, si) < max{dĈ(si, ui), dĈ(a, b)}. Moreover, since ui ∈
C(a, b), we have dĈ(ui, b) < 1. Thus, max{dĈ(a, si), dĈ(ui, b)} < max{dĈ(si, ui), dĈ(a, b)}.
Therefore h′ ≺ h, which contradicts the definition of h. J

Claim 3.2 implies that, for each i ∈ {1, . . . , k}, the point si is not in the interior of C(a, b).
I Claim 3.3. Let 1 ≤ i < j ≤ k. Then dĈ(si, sj) ≥ max{dĈ(si, ui), dĈ(sj , uj), 1}.

The proof of this claim is similar to the proof of Claim 3.2.
Without loss of generality we assume that a is the origin ō. Then, by the definition

of Ĉ, we have that DĈ(ō, 1) contains C(a, b). Also, from Claim 3.2, we have that si is not in
the interior of DĈ(ō, 1) for all i ∈ {1, . . . , k}. Let DĈ(ō, 2) be the Ĉ-disk centered at a with
radius 2. For each si /∈ DĈ(ō, 2), define s′

i as the intersection of DĈ(ō, 2) with the ray −→asi.
We let s′

i = si when si is inside DĈ(ō, 2). See Figure 7.
I Observation 3.4. If sj /∈ DĈ(ō, 2) (with 1 ≤ j ≤ k), the dĈ-distance from s′

j to DĈ(ō, 1) is 1.

I Lemma 3.5. For any pair si and sj with i 6= j, we have that dĈ(s′
i, s

′
j) ≥ 1.

Proof. If both si and sj are in DĈ(ō, 2), then from Claim 3.3 we have that dĈ(s′
i, s

′
j) =

dĈ(si, sj) ≥ 1. In the following, we assume, without loss of generality, that dĈ(ō, sj) ≥
dĈ(ō, si). Since s′

j is on the line segment ōsj , we have sj = λs′
j for some λ > 1 ∈ R.

Let p be the intersection point of DĈ(ō, 1) and ōsj . Since dĈ defines a norm, we have

7 By our general position assumption, the only points of S on the boundary of C(a, b) are a and b.
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ō=a

b

C(a, b)

si

sj = λs′j

s′i

s′j
DĈ(ō, 2)

DĈ(ō, 1)
p

Figure 7 The points s′
i and s′

j are projections of si and sj on DĈ(ō, 2), respectively.

dĈ(λs′
j , ō) = λdĈ(s′

j , ō). By Observation 3.4 we have that dĈ(sj , p) = dĈ(sj , ō)− dĈ(p, ō) =
λdĈ(s′

j , ō) − 1 = 2λ − 1, which is the distance from sj to DĈ(ō, 1). Further, dĈ(sj , s
′
j) =

dĈ(sj , ō)− dĈ(s′
j , ō) = 2λ− 2. For the sake of a contradiction, assume that dĈ(s′

i, s
′
j) ≤ 1. If

sj /∈ DĈ(ō, 2), we consider two cases:
Case 1) si ∈ DĈ(ō, 2). Then dĈ(ō, si) ≤ 2. Let Ds′

j
= DĈ(s′

j , 1). Since dĈ(s′
i, s

′
j) ≤ 1, we

have si ∈ Ds′
j
. From Claim 3.1 it follows that dĈ(sj , s

′
i) = dĈ(sj , si) ≤ dĈ(sj , p) < dĈ(sj , uj),

which contradicts Claim 3.3.
Case 2) si /∈ DĈ(ō, 2). Then dĈ(ō, si) > 2. Thus, si = δs′

i for some δ > 1 ∈ R. Moreover,
since dĈ(ō, sj) ≥ dĈ(ō, si) and s′

i, s
′
j are on the boundary of DĈ(ō, 2), δ ≤ λ. Hence, si is

on the line segment s′
i(λs′

i). Let Dsj
= DĈ(sj , 2λ − 1). Note that λ < 2λ − 1 because

λ > 1. Since dĈ defines a norm, dĈ(sj , λs
′
i) = dĈ(λs′

j , λs
′
i) = λdĈ(s′

j , s
′
i) ≤ λ < 2λ − 1.

Hence, λs′
i ∈ Dsj

. In addition, from Claim 3.1 it follows that Ds′
j
⊆ Dsj

. Therefore,
s′

i ∈ Dsj
. Thus, the line segment s′

i(λs′
i) is contained in Dsj

. Hence, si ∈ Dsj
. Then,

dĈ(sj , si) ≤ 2λ− 1 = dĈ(sj , p) < dĈ(sj , uj) which contradicts Claim 3.3. J

I Theorem 3.6. For any set of points S in general position and convex shape C, the graph
24-GGC(S) is Hamiltonian.

Proof. For each si we define the Ĉ-disk Di = DĈ(s′
i,

1
2 ). We also set D0 := DĈ(a, 1

2 ). By
Lemma 3.5, each pair of Ĉ-disks Di and Dj (i 6= j) are internally disjoint. See Figure 8. Since
s′

i ∈ DĈ(ō, 2) for all i, each disk Di is inside DĈ(a, 5
2 ). There can be at most Area(DĈ(ō, 5

2 ))
Area(D0) =

( 5
2 )2Area(Ĉ)

( 1
2 )2Area(Ĉ) = 25 disjoint disks in DĈ(ō, 2). Thus, there are at most 24 points s′

i in DĈ(ō, 1),
since D0 is centered at a. Hence, there are at most 24 points in the interior of C(a, b). J

3.2 Point-symmetric convex shapes
Using the fact that dC defines a metric when C is point-symmetric, we can improve the upper
bound for point-symmetric convex shapes. Indeed, given that dC = 2dĈ we can prove that:
(i) dC(si, a) ≥ max{dC(si, ui), 2}; and (ii) dC(si, sj) ≥ max{dC(si, ui), dC(sj , uj), 2}, for any
1 ≤ i < j ≤ k. By using C(a, b) instead of DĈ(ō, 1), DC(ō, 3) instead of DĈ(ō, 2), and DC(ō, 4)
instead of DĈ(ō, 5

2 ), in combination with arguments similar to those in the previous section,
we obtain that 15-GGC is Hamiltonian.
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a

b

C(a, b)

s′i

s′j

DĈ(ō, 2)

DĈ(ō, 1)

DĈ(ō, 5
2

)

Dj

Di

s′t
Dt

D0

Figure 8 The Ĉ-disks Di, Dj and Dt are contained in DĈ(a, 5
2 ).

When C is a regular polygon Pt with t even sides we can improve this bound by analyzing
specific values of t. When C is a square, we divide DP4(ō, 3) into nine disjoint squares of
radius 1 and show that only seven of them can contain points from {s′

1, . . . , s
′
k}, with at

most one point in each square. Using similar arguments as those for squares, we show that
11-GGP6 is Hamiltonian. Finally, for the remaining regular polygons with even sides we use
that the ex-circle of DP10(ō, 3) contains DPt(ō, 3) for all even t ≥ 10. Such a circle has radius
r ≈ 3.154. Hence, we can prove Hamiltonicity for 11-GGPt

using a result by Fodor [7] that
states that the minimum radius of a circle having 13 points at pairwise Euclidean distance at
least 2 is R ≈ 3.236, which is greater than r. Analogously, we show that there are at most 13
points inside DP8(ō, 3) such that each pair is at Euclidean distance at least 2, which proves
Hamiltonicity for 12-GGP8 .
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