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Abstract
The farthest-color Voronoi diagram (FCVD) is a farthest-site Voronoi diagram defined on a
family of m clusters (sets) of points in the plane. Its combinatorial complexity in the worst case
is Θ(mn), where n is the total number of points. In this paper we give structural properties of the
FCVD and list sufficient conditions under which this diagram has O(n) combinatorial complexity.
For such cases we present efficient construction algorithms.

1 Introduction

The Voronoi diagram is a well-known geometric partitioning structure, defined by a set of
simple geometric objects in a space, called sites. The ordinary (nearest-neighbor) Voronoi
diagram of a set of points in two dimensions is a subdivision of the plane into maximal
regions such that all points in one region share the same nearest site. In the farthest-site
Voronoi diagram, points in a single region have the same farthest site. Many generalizations
of this simple concept have been considered for different types of sites, metrics and spaces.
For a comprehensive list of results see [2].

We are interested in color Voronoi diagrams, where each site is a cluster (a set) of points
in R2, identified by a distinct color. The distance between a point x ∈ R2 and a cluster P is
realized by the nearest point in P , i.e., dc(x, P ) = minp∈P d(x, p). The nearest-color Voronoi
diagram (NCVD) of a family P of clusters, is a min-min diagram that can be easily derived
from the ordinary Voronoi diagram of all points in P: the region of a cluster P is the union
of the Voronoi regions of points belonging to P (see Fig. 1a). Its farthest counterpart, the
farthest-color Voronoi diagram (FCVD) of P is a max-min diagram and its properties have
not been extensively looked into (see Fig. 1b).

The FCVD was first studied by Huttenlocher et al. [9], showing that the combinatorial
complexity of the diagram in the worst case is Ω(mn) and O(mnα(mn)), where m is the
number of clusters and n is the overall number of points. This was later settled to Θ(mn) by
Abellanas et al. [1]. Using a geometric transformation in 3D, the diagram can be computed
in O(mn logn) time [9]: for every cluster P , each point in the plane is lifted in 3 dimensions,
with height equal to the distance from the nearest point in P , yielding a surface; the upper
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Figure 1 A family P of clusters along with (a) NCVD(P) and (b) FCVD(P).

envelope of these surfaces projected back onto the plane gives the FCVD. Instances of
linear-size diagrams have been considered by Bae [3], Claverol et al. [6] and Iacono et al. [10].
Applications of the FCVD include facility location problems [1], variants of the Steiner tree
problem [4], sensor deployment problems [13] and finding stabbing circles for line segments [6].

Closely related to the FCVD is the Hausdorff Voronoi diagram (HVD) of a family of point
clusters. The HVD is a min-max diagram: the distance from a point x ∈ R2 to a cluster is
the farthest distance, df = maxp∈P d(x, p), and the plane is subdivided into maximal regions
with the same nearest cluster. The HVD has been extensively studied, see e.g. [8, 15], and
many algorithmic paradigms have been considered for its construction, see e.g. [7, 11, 15, 16].
Interestingly, the algorithm presented in [8] can be adapted to also yield an O(n2)-time
algorithm for the FCVD. This has been remarked in [6] for point clusters of cardinality two.
In the worst case, this is optimal as the diagram may have complexity Θ(n2). However, the
algorithm remains Θ(n2) even if the diagram has only O(n) structural complexity.

In this work, we study structural properties of the FCVD, give sufficient conditions
under which the diagram has O(n) structural complexity and present efficient algorithms to
construct it when these conditions are met.

2 Definitions and basic properties

Let P := {P1, ..., Pm} be a family of m clusters of points in R2, where no two clusters share
a point. We assume that m > 1 and let

∑
i=1...m

|Pi| = n. We define the following diagrams.

I Definition 1. The nearest color Voronoi diagram (NCVD) of P is the subdivision of R2

into nearest color Voronoi regions. The nearest color Voronoi region of a cluster Pi ∈ P is
ncreg(Pi) = {x ∈ R2 | dc(x, Pi) < dc(x, Pj) ∀Pj ∈ P, j 6= i}.

I Definition 2. The farthest color Voronoi diagram (FCVD) of P is the subdivision of R2

into farthest color Voronoi regions. The farthest color Voronoi region of a cluster Pi ∈ P is
fcreg(Pi) = {x ∈ R2 | dc(x, Pi) > dc(x, Pj) ∀Pj ∈ P, j 6= i}.

A region fcreg(Pi) may consist of several maximally connected components, called faces.
Faces of fcreg(Pi) are further subdivided by the ordinary Voronoi diagram of Pi, which is
denoted Vor(Pi). This is called the internal subdivision of a face. For p ∈ Pi : fcreg(p) =
{x ∈ fcreg(Pi) | d(x, p) < d(x, q) ∀q ∈ Pi \ {p}}. A region fcreg(p) may have several faces.

I Definition 3. Given two clusters Pi, Pj , their color bisector is the locus of points equidistant
from the two clusters, that is, bc(Pi, Pj) = {x ∈ R2 | dc(x, Pi) = dc(x, Pj)}.
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Figure 2 (a) A bisector consisting of a cycle and a chain. (b) Two bisectors sharing a site
intersecting linearly many times. (c) Hull of the clusters in Fig. 1 and the associated normal vectors.

Bisector bc(Pi, Pj) is a subgraph of the Voronoi diagram Vor(Pi ∪Pj). It is a collection of
edge-disjoint cycles and unbounded chains of total complexity O(|Pi|+ |Pj |), which is tight
in the worst case (see Fig. 2a).

We refer to edges of the FCVD belonging to color bisectors as pure edges, and to edges
or vertices of the internal subdivisions as internal. Voronoi vertices incident to three color
bisectors are called pure vertices, and vertices incident to two color bisectors and one internal
edge are called mixed vertices. See Fig. 3 for an illustration of these features.

The following lemma characterizes the structure of farthest color regions.

I Lemma 2.1. A face f of fcreg(Pi) satisfies:
1. If f is bounded, its internal subdivision is a tree whose leaves are mixed vertices on ∂f .
2. If f is unbounded, its internal subdivision is a (possibly empty) forest, where each tree

has exactly one unbounded edge and its remaining leaves are mixed vertices on ∂f .
The boundary of a face fcreg(p), p ∈ Pi, is a sequence of convex chains (as seen from p).

We use a refinement of the FCVD derived by the visibility decomposition, defined anal-
ogously to [16]: For each region fcreg(p) and for each pure or mixed vertex u on ∂fcreg(p),
draw the portion of the line through p and u that lies inside fcreg(p) (see Fig. 3).

The cluster hull, for short hull, of a family of point clusters is a closed (not necessarily
simple) polygonal chain that characterizes the unbounded faces of the FCVD and the HVD.
We review the definition from [16], see Fig. 2c.

I Definition 4. Given a family of clusters P, a point p ∈ Pi is a hull vertex if p admits a
supporting line l, such that Pi lies completely on one of the two halfplanes defined by l and
the other one intersects every cluster Pj ∈ P \ {Pi}. A hull edge is a segment connecting two
hull vertices p ∈ Pi, q ∈ Pj such that the line through p, q leaves Pi and Pj on one halfplane,
while the other halfplane intersects all other clusters in P . Such an edge is associated with a
normal vector in the direction of the halfplane that does not include Pi, Pj . The hull edges
sorted by the circular ordering of all such normal vectors define a closed polygonal chain
called the cluster hull of P, denoted CLH (P).

We show that there is a one-to-one correspondence between the unbounded faces of the
FCVD and the HVD. Therefore, results for hulls [16] directly follow.

I Lemma 2.2. A region fcreg(p) is unbounded if and only if p is a vertex of CLH(P). The
circular order of hull edges along CLH(P) is equal to that of unbounded edges of FCVD(P).
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Figure 3 (a) An unbounded and (b) a bounded face of a point p ∈ Pi.

3 Conditions for linear-size diagrams

Abstract Voronoi diagrams were introduced by Klein [12]. Instead of sites and distance
measures, these diagrams are defined in terms of bisecting curves satisfying a set of simple
combinatorial properties, called axioms. In the context of color Voronoi diagram, these
axioms can be stated as follows, for every subset P ′ ⊆ P:
(A1) Each region in NCVD(P ′) is non-empty and path-wise connected.
(A2) Each point in the plane belongs to the closure of a region in NCVD(P ′).
(A3) Each color bisector is an unbounded Jordan curve.
(A4) Any two color bisectors intersect transversally and in a finite number of points.

A family of clusters is called admissible if the system of bisectors satisfies (A1)-(A4). By
the structural properties of farthest abstract Voronoi diagrams [5, 14] we derive the following.

I Lemma 3.1. If P is admissible, then the skeleton of FCVD(P) is a tree of O(n) total
structural complexity. One region may consist of Θ(m) disjoint faces and the total number
of faces is O(m).

Two clusters are called linearly-separable if they have disjoint convex hulls. A family of
pairwise linearly-separable clusters is also called linearly-separable. The color bisector of two
linearly-separable clusters is a single unbounded, monotone chain. The color bisectors of
three pairwise linearly-separable clusters, however, bc(Pi, Pj) and bc(Pj , Pk) may intersect
Θ(|Pi| + |Pj | + |Pk|) times (see Fig. 2b). Thus, a linearly separable family need not be
admissible. By showing that if the regions of NCVD(P) are connected then the same should
hold for NCVD(P ′), for any P ′ ⊆ P, we derive the following.

I Lemma 3.2. Let P be a linearly-separable family of clusters. If the regions in NCVD(P)
are path-connected, then P is admissible.

Lemma 3.2 indicates that we can determine if a family P is admissible in O(n logn) time.
A family of clusters P is called disk-separable if for every cluster Pi ∈ P there exists a disk
containing Pi and no point from other clusters (see Fig. 4). By proving that disk separability
implies connected regions in NCVD(P), we derive:

I Lemma 3.3. Any family of disk-separable clusters P is admissible.

We now look into linearly-separable families of clusters. The following statement has
been proven for clusters of cardinality two [6] but holds also for general clusters.

I Lemma 3.4. If P is linearly-separable, then FCVD(P) has O(m) unbounded faces.



I. Mantas et al. 12:5

(a) (b) (c)

Figure 4 (a) A disk-separable family of clusters P along with (b) NCVD(P) and (c) FCVD(P).

A pair of points (p1, p2) ∈ Pi, which defines a Voronoi edge e in Vor(Pi), is said to be
straddled by a cluster Qj ∈ P if the line through (p1, p2) intersects the segment q1q2 defined
by (q1, q2) ∈ Qj and the circles through (q1, p1, p2) and (q2, p1, p2) are both centered on e
(see Fig. 5a). We also say that (q1, q2) and Qj straddle the Voronoi edge e.

We define the straddling number of e, denoted s(e), as the number of clusters in P that
straddle e. Clearly, for a cluster Pi, s(Pi) = O(m|Pi|). The straddling number of family P,
is s(P) =

∑
Pi∈P s(Pi). In the worst case, s(P) = Θ(mn) .

I Lemma 3.5. If P is linearly-separable, then the number of bounded faces, and the overall
structural complexity of FCVD(P), is O(n+ s(P)).

Proof. (sketch) For each Voronoi edge e of Vor(Pi) we allow one bounded face of fcreg(Pi)
and count the number of mixed vertices that may be incident to additional faces of fcreg(Pi)
on e. Let v1, v2 be two consecutive mixed vertices on a Voronoi edge e of Vor(Pi), induced
by points (p1, p2), such that segment v1v2 6∈ fcreg(Pi) (see Fig.5). Suppose v1 is induced by
q1 ∈ Qj . By considering a disk moving from left to right on e and touching (p1, p2), we can
show that v2 must be induced by a point q2 ∈ Qj such that (q1, q2) defines a straddle on e.
In addition, cluster Qj cannot induce any other mixed vertex on e. Thus, the pair of vertices
(v1, v2) is charged to a unique cluster counted in the straddling number of e. J

By Lemma 3.5, if the straddling number s(P) is O(n), then FCVD(P) has complexity O(n).

4 Construction algorithms

Consider a divide & conquer approach. Split P into PL and PR by a vertical line; Com-
pute FCVD(PL) and FCVD(PR) recursively; Merge FCVD(PL) and FCVD(PR) to obtain
FCVD(P). Merging requires constructing the merge curveM(PL ∪ PR), which is the set of
pure edges of FCVD(PL ∪ PR) belonging to bisectors bc(Pi, Pj) with Pi ∈ PL and Pj ∈ PR.
A merge curve may consist of linearly many chains, called components. To construct it, a
starting point has to be found on each component and then the chain has to be traced.

Given a starting point on a component we can efficiently trace it, by adapting standard
tracing methods and exploiting the visibility decomposition, similarly to [16].

I Lemma 4.1. Given diagrams FCVD(PL),FCVD(PR) and a starting point on a component
M ofM(PA,PB), the component M can be computed in O(|M |) time.

Due to Lemma 2.2, we can identify starting points on the unbounded components of
M(PA,PB) by merging CLH(PL) and CLH(PR), before merging the two diagrams. This
can be done in time O(|CLH(PL)|+ |CLH(PR)|), see [16].

If P is admissible, (such as a family of disk separable clusters), then all regions of
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Figure 5 (a) A family P, where pair (p1, p2) is straddled by two clusters Q, R.(b) Illustration of
the proof of Lemma 3.5.

FCVD(P) are unbounded (Lemma 3.1) and this is true for all components of the merge
curve. Thus, we derive the following.

I Theorem 1. If P is admissible, then FCVD(P) can be constructed in O(n logn) time.

Note that for an admissible family P, FCVD(P) could also be computed using the
randomized algorithm of [14] for abstract Voronoi diagrams. Color bisectors, however, may
have Θ(n) complexity, so, a direct application would give time complexity O(n2 logn).

When P is not admissible, the challenge is to identify starting points on the bounded
components of the merge curve. For linearly-separable families where clusters have a constant
straddling number, there are constant number of bounded components. To identify starting
points on these components, the data structure and technique of [10] can be used to do this
in O(n logn) time, yielding an O(n log2 n)-time algorithm.

I Theorem 2. If P is a linearly-separable family of clusters, where s(Pi) is constant for any
Pi ∈ P, then FCVD(P) can be constructed in O(n log2 n) time.

We conjecture that for linearly-separable families the FCVD can have complexity Θ(mn).
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