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Abstract
We are given a set S of points in the Euclidean plane. We assume that S is in general position.
A simple polygon P is a surrounding polygon of S if each vertex of P is a point in S and every
point in S is either inside P or a vertex of P . In this paper, we present an enumeration algorithm
of the surrounding polygons for a given point set. Our algorithm is based on reverse search by
Avis and Fukuda and enumerates all the surrounding polygons in polynomial delay.

1 Introduction

Enumeration problems are fundamental and important in computer science. Enumerating
geometric objects are studied for triangulations [2, 3, 9], non-crossing spanning trees [9],
pseudoline arrangements [20], non-crossing matchings [19], unfoldings of Platonic solids [8],
and so on. In this paper, we focus on an enumeration problem of simple polygons of a given
point set. We are given a set S of n points in the Euclidean plane. A surrounding polygon
of S is a simple polygon P such that each vertex of P is a point in S and every point in S

is either inside the polygon or a vertex of the polygon. A surrounding polygon P of S is a
simple polygonization1 of S if every point of S is a vertex of P . See Figure 1 for examples.

Simple polygonizations are studied from various perspectives. As for the counting, the
current fastest algorithm was given by Marx and Miltzou [10], and it runs in nO

√
n time when

a set of n points is given. It is still an outstanding open problem to propose a polynomial-time
algorithm that counts the number of simple polygonizations of a given point set [12]. Much
attention has been paid for combinatorial counting, too. A history on the lower and upper
bounds is summarized by Demaine [4] and O’Rourke et al. [14]. Let bP be the number of
simple polygonizations of a point set P , and let bn be the maximum of bP among all the sets
P of n points. The current best lower and upper bounds for bn are 4.64n [5] and 54.55n [15],
respectively.

Another research topic is a random generation of simple polygonizations. Since no
polynomial-time counting algorithm is known for simple polygonizations, it seems to be a
hard task to propose a polynomial-time algorithm that uniformly generates simple polygoniza-
tions. However, uniformly random generations are known for restricted classes: x-monotone
polygons [21] and star-shaped polygons [16]. These uniform random generations are based

1 The simple polygonizations are also called spanning cycles, Hamiltonian polygons, and planar traveling
salesman tours.
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Figure 1 (a) A point set S. (b) A surrounding polygon of S. (c) A simple polygonization of S.

on counting. For general simple polygonizations, heuristic algorithms are known [1, 17, 21].
Those algorithms efficiently generate simple polygons, but not uniformly at random.

On the other hand, nothing is known for the problem of enumerating all the simple
polygonizations, as mentioned in [18]. A trivial enumeration is to generate all the permutations
of given points, then output only simple polygonizations. However, this is clearly a time-
consuming algorithm. It is an interesting and challenging question whether all the simple
polygonizations of a given point set can be enumerated efficiently (for example, in output-
polynomial time2 or in polynomial delay3).

As the first step toward the question, we consider the problem of enumerating the
surrounding polygons of a given point set S. From the definition, the set of surrounding
polygons of S includes the set of simple polygonizations of S. We show that, for this
enumeration problem, the reverse search by Avis and Fukuda [2] can be applied. First, we
introduce an “embedding” operation: deleting a vertex from a surrounding polygons and
putting it inside the polygon. Then, using this operation, we define a rooted tree structure
among the set of surrounding polygons of S. We show that, by traversing the tree, one
can enumerate all the surrounding polygons. The proposed algorithm enumerates them in
polynomial delay.

Due to space limitation, all the proofs and some details are omitted.

2 Preliminaries

A simple polygon is a closed region of the plane enclosed by a simple cycle of edges. Here, a
simple cycle means that two adjacent line segments intersect only at their common endpoint
and no two non-adjacent line segments intersect. An ear of a simple polygon P is a triangle
such that one of its edges is a diagonal of P and the remaining two edges are edges of P .
The following theorem for ears is known.

I Theorem 2.1 ([11]). Every simple polygon with n ≥ 4 vertices has at least two non-
overlapping ears.

Let S be a set of n points in the Euclidean plane. We assume that S is in general
position, i.e., no three points are collinear. The upper-left point of S is the point with the
minimum x-coordinate. If a tie exists, we choose the point with the maximum y-coordinate
among them. A surrounding polygon of S is a simple polygon such that every point in S is
either inside the polygon or a vertex of the polygon. For example, the convex hull of S is a

2 The running time of an enumeration algorithm A for an enumeration problem is output-polynomial if
the total running time of A is bounded by a polynomial in the input and output size of the problem.

3 The running time of an enumeration algorithm A for an enumeration problem is polynomial-delay if
the delay, which is the maximum computation time between any two output, of A is bounded by a
polynomial in the input size of the problem.
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Figure 2 (a) A surrounding polygon, where p6, p7, p11, p14, p15, p16, and p17 are embeddable. (b)
The surrounding polygon obtained by embedding p16. The point p16 is embedded inside the polygon.
(c) The parent of the polygon in (a), which is obtained by embedding p17.

surrounding polygon of S. Note that any surrounding polygon has the upper-left point in S

as a vertex.
We denote by P(S) the set of surrounding polygons of S, and denote by CH(S) the convex

hull of S. We denote a surrounding polygon of S by a (cyclic) sequence of the vertices in the
surrounding polygon. Let P = 〈p1, p2, . . . , pk〉 be a surrounding polygon of S. Throughout
this paper, we assume that p1 is the upper-left point in S, the vertices on P appear in
counterclockwise order, and the successor of pk is p1. Let p be a vertex of a surrounding
polygon P of S. We denote by pred(p) and succ(p) the predecessor and successor of p on P ,
respectively.

3 Family tree

Let S be a set of n points in the Euclidean plane, and let P(S) be the set of surrounding
polygons of S. In this section, we define a tree structure over P(S) such that its nodes
correspond to the surrounding polygons. To define a tree structure, we first define the parent
of a surrounding polygon using the “embedding operation” defined below. Then, using the
parent-child relationship, we define the tree structure rooted at CH(S).

Now, we introduce some notations. Let P = 〈p1, p2, . . . , pk〉 be a surrounding polygon
of S. Recall that p1 is the upper-left vertex on P and the vertices on P are arranged in
the counterclockwise order. We denote by pi ≺ pj if i < j holds, and we say that pj is
larger than pi. The vertex p of P is embeddable if the triangle consisting of pred(p), p, and
succ(p) does not intersect the interior of P . See examples in Figure 2(a). In the figure,
p6, p7, p11, p14, p15, p16, and p17 are embeddable.

I Lemma 3.1. Let S be a set of points, and let P be a surrounding polygon in P(S)\{CH(S)}.
Then, P has at least one embeddable vertex.

Now, let us define an operation that makes another surrounding polygon from a surround-
ing polygon. Let p be an embeddable vertex on P . An embedding operation is to remove the
two edges (pred(p), p) and (p, succ(p)) and insert the edge (pred(p), succ(p)). Intuitively, an
embedding operation “embeds” a vertex into the interior of P . See Figure 2.

We denote by larg(P ) the largest embeddable vertex on P . The parent of P , denoted
by par(P ), is the polygon obtained by embedding larg(P ) on P . Note that par(P ) is also a
surrounding polygon of S. By repeatedly finding the parents from P , we obtain a sequence
of surrounding polygons. The parent sequence PS(P ) = 〈P1, P2, . . . , P`〉 of P is a sequence of
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Figure 3 A parent sequence.

Input point set

Figure 4 An example of a family tree.

surrounding polygons such that the first polygon is P itself and Pi is the parent of Pi−1 for
each i = 2, 3, . . . , `. See Figure 3. As we can see in the following lemma, the last polygon in
a parent sequence is always CH(P ).

I Lemma 3.2. Let S be a set of n points in the Euclidean plane, and let P be a surrounding
polygon in P(S) \ {CH(S)}. The last polygon of PS(P ) is CH(S).

From Lemma 3.2, for any surrounding polygon, the last polygon of its parent sequence is
the convex hull. By merging the parent sequences for all surrounding polygons in P(S), we
have the tree structure rooted at CH(S). We call such a tree the family tree. An example of
the family tree is shown in Figure 4.

4 Enumeration algorithm

In this section, we present an algorithm that, for a given set S of n points, enumerates all
the surrounding polygons in P(S). In the previous section, we defined the family tree among
P(S). We know that the root of the family tree is the convex hull of S. Hence, we have the
following enumeration algorithm. We first construct the convex hull of S. Then, we traverse
the (implicitly defined) family tree with depth first search. This algorithm can enumerate
all the surrounding polygons in P(S). To perform the search, we design an algorithm that
finds all the children of any surrounding polygon of S. Starting from the root, we apply the
child-enumeration algorithm recursively, and then we can traverse the family tree.

To describe how to construct children, we introduce some notations. Let P = 〈p1, p2, . . . , pk〉
be a surrounding polygon in P(S). For an edge (pi, pi+1) of P and a point p inside P , we
denote by P (pi, pi+1; p) the polygon obtained by removing (pi, pi+1) and inserting two edges
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(pi, p) and (p, pi+1). Intuitively, this operation is the reverse one of embedding operation.
We call it a dig operation. Any child of P is described as P (pi, pi+1; p) for some p, pi, and
pi+1. Hence, for all possible P (pi, pi+1; p), if we can check whether or not P (pi, pi+1; p) is a
child, then one can enumerate all the children. We have the following observation.

I Lemma 4.1. Let P be a surrounding polygon of a set of points. For an edge (pi, pi+1) of
P and a point p inside P , P (pi, pi+1; p) is a child of P if

(1) P (pi, pi+1; p) is a surrounding polygon of S and
(2) par(P (pi, pi+1; p)) = P holds.

Note that the condition (2) in Lemma 4.1 can be rephrased as follows: p is the largest
embeddable vertex in P (pi, pi+1; p). Using the conditions in Lemma 4.1, we obtain the
child-enumeration algorithm. For every possible P (pi, pi+1; p), we check whether or not
P (pi, pi+1; p) is a child of P . We apply the algorithm recursively starting from the convex hull.
Thus, we can traverse the family tree. In this way, one can enumerate all the surrounding
polygons. In each recursive call, there are O(n2) child candidates P (pi, pi+1; p). We can
check whether or not P (pi, pi+1; p) is a child in O(log n) time using triangular range query [6]
with O(n2)-time preprocessing and O(n2) additional space for an input point set and shortest
path query [7] with O(n)-time preprocessing for each surrounding polygon. Thus, each
recursive call takes O(n2 log n) time. Now we have the following theorem.

I Theorem 4.2. Let S be a set of n points in the Euclidean plane. One can enumerate all
the surrounding polygons in P(S) in O(n2 log n |P(S)|)-time and O(n2) space.

From the theorem above, one can see that our algorithm is output-polynomial. Using
the even-odd traversal in [13], we have a polynomial-delay enumeration algorithm. In the
traversal, the algorithm outputs polygons with even depth when we go down the family tree
and output polygons with odd depth when we go up. See [13] for further details. We have
the following corollary.

I Corollary 4.3. Let S be a set of n points in the Euclidean plane. There is an O(n2 log n)-
delay and O(n2)-space algorithm that enumerates all the surrounding polygons in P(S).
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