
Approximating the Earth Mover’s Distance
between sets of points and line segments∗

Marc van Kreveld1, Frank Staals1, Amir Vaxman1, and Jordi L.
Vermeulen1

1 Department of Information and Computing Sciences, Utrecht University
{m.j.vankreveld;f.staals;a.vaxman;j.l.vermeulen}@uu.nl

Abstract
We show that a (1 + ε)-approximation algorithm exists for the Earth Mover’s Distance between
a set of n points and set of n line segments with equal total weight. Our algorithm runs in
O
(
n6

ε2 log2 ( 1
ε

)
log2

(
n2

ε log 1
ε

))
time.

1 Introduction

The Earth Mover’s Distance (EMD) is a metric that is widely used in fields such as image
retrieval [13], shape matching [5, 8, 16] and mesh reconstruction [3]. It models two sets A
and B as distributions of mass, and takes their distance D(A,B) to be the minimum cost of
transforming one distribution into the other, where cost is measured by the amount of mass
moved multiplied by the distance over which it is moved. More formally,

D(A,B) = inf
µ∈M

∫
A

∫
B

d(a, b) · µ(a, b) da db (1)

where M is the set of all mappings of mass between A and B. In the case where A and B
are sets of (weighted) points, we can rewrite this as

D(A,B) = min
µ∈M

∑
a∈A

∑
b∈B

d(a, b) · µ(a, b) (2)

For unweighted point sets, the solution can be obtained by solving an assignment problem;
for weighted point sets, this is an instance of a min cost max flow problem.

In this work, we consider the case where A is a set of weighted points and B is a set of line
segments in R2. We provide a polynomial-time algorithm that gives a (1 + ε)-approximation
to the Earth Mover’s Distance between A and B, and also gives an assignment of mass that
realises this cost. To our knowledge, this is the first combinatorial algorithm with a provable
approximation ratio for the Earth Mover’s Distance when the objects are continuous rather
than discrete points.

2 Related work

The general problem of optimally moving a distribution of mass was first described by Monge
in 1781 [11], and was reformulated by Kantorovich in 1942 [6]. It is known as the Earth
Mover’s Distance due to the analogy of moving piles of dirt around; it is also known as the
1-Wasserstein distance, and is a special case of the more general optimal transport problem.
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For a full treatment of the problem’s history and connections to other areas of mathematics,
the reader is referred to Villani’s book [17].

The Earth Mover’s Distance has been studied in many geometric contexts. Cabello et
al. [1] give a (2 + ε)-approximation to minimising the EMD between two point sets under
rigid transformations. For continuous distributions, rather than discrete point sets, many
numerical algorithms are known (see e.g. De Goes et al. [2], Lavenant et al. [7], Mérigot [9, 10]
and Solomon et al. [15]). For the case where one set contains weighted points and the other
is a bounded set C ⊂ Rd, Geiß et al. [4] give a geometric proof that there exists an additively
weighted Voronoi diagram such that transporting mass from each point p to the part of
C contained in its Voronoi cell is optimal. The weights of this Voronoi diagram can be
determined numerically.

De Goes et al. [3] discuss a problem similar to our own in the context of the reconstruction
and simplification of 2D shapes. Given a set of points, they want to reconstruct a simplicial
complex of a given number of vertices that closely represents the shape of the point set.
They start with computing the Delaunay triangulation of the point set, then iteratively
collapse the edge that minimises the increase in the EMD between the point set and the
triangulation. They use a variant of the EMD in which the cost is proportional to the square
of the distance (2-Wasserstein distance). This allows them to calculate this variant of the
EMD between a given set of points and a given edge of the triangulation exactly, as the
squared distance can be decomposed into a normal and a tangential component. However,
they determine the assignment of points to edges heuristically. In this work, we show how to
obtain a (1 + ε)-approximation to the true optimal solution.

3 Approximating the Earth Mover’s Distance

We are given a set of points P = {p1, . . . , pn} with weights {w1, . . . , wn} and a set of segments
S = {s1, . . . , sn}, with lengths {l1, . . . , ln}. We assume the mass associated with a segment is
equal to its length, and that this mass is distributed uniformly over each segment. Given that∑
wi =

∑
lj = n, we want to compute a “transport plan” of mass from P to S that minimises

the cost according to the Earth Mover’s Distance. We define for each pair (pi, sj) ∈ P × S a
function µi,j(t), with t ∈ [0, lj ], that describes the density of mass being moved from pi to
the point sj(t). All these functions together describe the function µ used in the definition
of D(A,B). Such a set of functions needs to satisfy the following conditions to be a valid
transport plan:

0 ≤ µi,j(t) ≤ 1 (3)

∀i :
n∑
j=1

∫
t

µi,j(t) dt = wi (4)

∀j, t :
n∑
i=1

µi,j(t) = 1 (5)

We can then define the cost of a given transport plan as

n∑
i=1

n∑
j=1

∫ lj

0
µi,j(t) · d(pi, sj(t)) dt (6)

where sj(t) is the point on sj associated with value t and d(·, ·) is any metric. Our problem
is now to find a transport plan with minimal cost.
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(a) (b)

(c) (d)

Figure 1 Our construction of Q for a single line segment under the Euclidean metric. (a) shows
the input. (b) shows the Voronoi diagram of the points and the parts of the segment with distance
at least δ/n. (c) shows the generated subsegments, and (d) all of Q, with the parts with distance
less than δ/n added back in.

We now describe a polynomial-time algorithm that finds a transport plan with a cost
that is at most 1 + ε times the cost of the optimal transport plan. Our strategy is as follows:
we subdivide each segment such that for each subsegment s′ the ratio of the distance to
the closest and furthest point on s′ for any pi ∈ P is at most 1 + δ. We then solve a min
cost max flow problem on a bipartite graph between P and the subdivided segments, where
the cost of any edge is equal to the shortest distance between a point and a subsegment.
Finally, we use the solution to this flow problem to build a discrete transport plan. For an
appropriate choice of δ, this gives a (1 + ε)-approximation.

We begin by subdividing our segments as follows. First, we remove all parts of segments
that lie within distance δ/n of any point in P (we will consider these parts separately later).
Call the remaining set of segments S′; we subdivide S′ by performing the following procedure:
for each point in p ∈ P , we consider the part of S′ that is within its Voronoi cell. Call this
part S′p. Now consider the closest point to p of any segment s ∈ S′p, call their distance d.
We create a subsegment s′, starting at the closest point of s to p, with length d · (1 + δ) (or
the length of s, if that is smaller). We remove this subsegment s′ from S′p, and iterate until
S′ is empty. Note that this way, the subsegments increase in size in both directions from the
closest point to p. Call the set of all s′ and all parts of the segments that lie within distance
δ/n Q; this is our subdivision of S.
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I Lemma 1. Q has O
(
n2

δ log 1
δ

)
subsegments.

Proof. Consider any segment sj ∈ S. As the subsegments are created based on the closest
point, we define two variables ri and `i that denote the length of the part of sj contained
in pi’s Voronoi cell on either side of the perpendicular line from pi to the supporting
line of sj . We also have at most one subsegment per point for the part that is within
distance δ/n. The number of subsegments generated by pi on sj can then be expressed as
g(ri, `i) ≤ dlog1+δ( ri

δ/n )e+ dlog1+δ( `i

δ/n )e+ 1 ≤ log1+δ( ri

δ/n ) + log1+δ( `i

δ/n ) + 3. Here we are
counting the number of times we need to multiply the starting distance of δ/n by 1 + δ in
order to reach length ri or `i.

We are interested in the worst-case number of subsegments, so we want to find the
maximum value of

∑
g(ri, `i) subject to the constraint that

∑
(ri + `i) ≤ lj . As

∑
g(ri, `i)

is a sum of logarithms, this is the same as maximising the product of all g(ri, `i), which is
achieved when all ri and `i are equal (i.e. all are lj/2n). By the same argument, the worst
number of subsegments generated on all of S is upper bounded by making all lj equal (i.e.
all are 1). This gives us an upper bound on the total number of subsegments of

n∑
i=1

n∑
j=1

2 · log1+δ

(
1/2n
δ/n

)
+ 6 = 2n2 ·

ln
( 1

2δ
)

ln(1 + δ) + 6n2 = O

(
n2

δ
log 1

δ

)
(7)

Note that we use the fact that ln(1 + δ) ≈ δ for small values of δ. We get that our number
of subsegments is O

(
n2

δ log 1
δ

)
in the worst case. J

We now define a complete bipartite graph G = (P ∪ Q,E), with edges between each
point-subsegment pair. The cost of each edge will simply be the shortest distance between
the point and segment it connects. A solution to a flow problem in G can be transformed
into a transport plan by assigning a piece of subsegment to a point with length equal to the
amount of flow along the corresponding edge. We will show that the EMD between P and S
is approximated by the cost of any transport plan derived from a min cost max flow in G.

First note the following general lower bound on the cost of an optimal solution:

I Lemma 2. The Earth Mover’s Distance between P and Q is bounded from below by the
cost ‖W‖ of a min cost max flow W in G.

Proof. Consider any transport plan that minimises the Earth Mover’s Distance; call the
cost associated with this plan OPT. If instead of spreading the mass equally over the whole
segment, we move all the mass to the closest point on the segment, we obtain a plan with
cost OPT∗ ≤ OPT. Such a plan is a solution to a maximum flow problem in G, as it moved
all available mass. It follows that the cost ‖W‖ of a minimum cost maximum flow W in G
satisfies ‖W‖ ≤ OPT. J

We also note the following lower bound on the value of ‖W‖:

I Lemma 3. ‖W‖ ≥ δ − 2δ2.

Proof. For each point-segment pair, the part of the segment that has distance at most
δ/n has length at most 2δ/n. The total length over all point-segment pairs is then 2δn.
This leaves n − 2δn length with distance of at least δ/n, which gives a minimum cost of
(n− 2δn) · δ/n = δ− 2δ2. Due to our construction of Q, we know that no subsegment crosses
the distance boundary of δ/n. It follows that δ − 2δ2 ≤ ‖W‖. J
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Using the lower bound from Lemma 2 and the way we constructed Q, we can derive a
lower and upper bound on the solution obtained by the flow problem.

I Lemma 4. For any transport plan T derived from W we have that its cost ‖T ‖ ≤
(1 + δ) ‖W‖+ 2δ2.

Proof. We can upper bound ‖T ‖ by measuring all distances to the furthest point in each
subsegment. We constructed Q such that the ratio of the closest and furthest distance
between any point-subsegment pair was 1 + δ when the closest distance was at least δ/n. We
can therefore bound all parts of T where the distance is at least δ/n by (1 + δ) ‖W‖. The
total mass being moved over a distance at most δ/n in T is at most δn, giving a cost of 2δ2.
The total cost when measuring to the furthest point is therefore (1 + δ) ‖W‖+ 2δ2. J

I Corollary 5. ‖W‖ ≤ OPT ≤ (1 + δ) ‖W‖+ 2δ2.

Putting this all together, we can show that ‖T ‖ approximates OPT.

I Theorem 6. The cost of any transport plan T derived from W is a (1 + 5δ)-approximation
to the Earth Mover’s Distance between P and S for 0 < δ ≤ 1

4 .

Proof. The ratio between the upper and lower bound on ‖T ‖ is

(1 + δ) ‖W‖+ 2δ2

‖W‖

This ratio is the largest for small values of ‖W‖, so we plug in the lower bound from
Lemma 3:

(1 + δ) ‖W‖+ 2δ2

‖W‖

≤ (1 + δ)(δ − 2δ2) + 2δ2

δ − 2δ2

= 1 + δ − 2δ2

1− 2δ

= 1 + 3δ − 2δ2

1− 2δ

= 1 + δ + 2δ
1− 2δ

≤ 1 + 5δ (assuming δ ≤ 1
4 )

As ‖W‖ is also a lower bound for OPT, and T can obviously not have lower cost than
the optimal transport plan, this gives a (1 + 5δ)-approximation. J

Setting δ = ε/5 gives a (1 + ε)-approximation.

3.1 Analysis
We can calculate W in O(|E| log |V |((|E| + |V |) log |V |)) time using Orlin’s algorithm for
minimum cost maximum flows [12]. In our case, |V | = O

(
n2

ε log 1
ε

)
and |E| = O

(
n3

ε log 1
ε

)
;

as |V | ∈ O(|E|), we can simplify the running time to O(|E|2 log2 |V |). This gives us a total
running time of O

(
n6

ε2 log2 ( 1
ε

)
log2

(
n2

ε log 1
ε

))
.
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This time can be improved when the lengths of the segments in S are divisible by δ2/n,
by making all subsegments have the same length. When this is the case, W becomes a
minimum cost matching rather than a minimum cost maximum flow. We can then use the
algorithm by Sharathkumar and Agarwal to find a (1 + δ)-approximate bipartite matching
in O(|V | poly(log |V |, 1

δ )) time [14]. We pay for this approximate rather than optimal
matching by an extra 2δ in our approximation factor, giving a (1 + 7δ)-approximation.
Using this subdivision, the number of subsegments is n2/δ2, giving a total running time of
O
(
n2

ε2 poly
(

log n2

ε2 ,
1
ε

))
= O

(
n2 poly

(
log n

ε ,
1
ε

))
.
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